Background And Aims: HCV infection can be successfully managed with antiviral therapies; however, progression to chronic liver disease states, including NAFLD, is common. There is currently no reliable in vitro model for investigating host-viral interactions underlying the link between HCV and NAFLD; although liver organoids (LOs) show promise, they currently lack nonparenchymal cells, which are key to modeling disease progression.

Approach And Results: Here, we present a novel, multicellular LO model using a coculture system of macrophages and LOs differentiated from the same human pluripotent stem cells (PSCs). The cocultured macrophages shifted toward a Kupffer-like cell type, the liver-resident macrophages present in vivo , providing a suitable model for investigating NAFLD pathogenesis. With this multicellular Kupffer-like cell-containing LO model, we found that HCV infection led to lipid accumulation in LOs by upregulating host lipogenesis, which was more marked with macrophage coculture. Reciprocally, long-term treatment of LOs with fatty acids upregulated HCV amplification and promoted inflammation and fibrosis. Notably, in our Kupffer-like cell-containing LO model, the effects of 3 drugs for NASH that have reached phase 3 clinical trials exhibited consistent results with the clinical outcomes.

Conclusions: Taken together, we introduced a multicellular LO model consisting of hepatocytes, Kupffer-like cells, and HSCs, which recapitulated host-virus intercommunication and intercellular interactions. With this novel model, we present a physiologically relevant system for the investigation of NAFLD progression in patients with HCV.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HEP.0000000000000683DOI Listing

Publication Analysis

Top Keywords

model investigating
12
model
8
liver disease
8
hcv infection
8
multicellular model
8
kupffer-like cell-containing
8
cell-containing model
8
hcv
5
multicellular
4
multicellular liver
4

Similar Publications

Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.

Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.

View Article and Find Full Text PDF

Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts.

View Article and Find Full Text PDF

Agriculture has been recognized as a key sector to leverage for improved food security. Yet, the evidence on agriculture-gender linkages to food security is still scarce and winding. This study investigates the impact of women empowerment in agriculture on efficiency and food security of households and individuals.

View Article and Find Full Text PDF

Heat stress has been proven to cause negative effects on livestock leading to lower productivity and economic value. Understanding how heat stress manifests within an animal's body is the first step in devising a heat stress mitigation strategy; transcriptomic studies are one of the methods used. Here, using a systematic literature review methodology, we examine the recent decade of transcriptomics' application to the study of livestock adaptation.

View Article and Find Full Text PDF

Synthesis of zeolite from rice husk ash and kaolinite clay for the removal of methylene blue from aqueous solution.

Heliyon

January 2025

Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.

Zeolite was successfully synthesized using a mixture of kaolinite clay (which served as the alumina source) and rice husk ash (silica source). The aim of this work was to synthesize highly efficient zelolite to remove methyle blue dye from aqueous solution. The synthesized adsorbent was characterised using Fourier Transform Infrared (FTIR) spectroscopy, powder x-ray diffraction (PXRD) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and pH at the point of zero charge (pHpzc).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!