In this work, we synthesized polydopamine nanoparticles (PDNPs-M, M = I, II, III, and IV) with uniform particle sizes but varying l-arginine (Arg) contents (0%, 0.53%, 3.73%, and 6.62%) through a one-pot synthesis approach. Thin-film nanocomposite (TFN) membranes were fabricated via in situ interfacial polymerization (IP). The effects of the PDNPs-M chemical structure on the IP process and the consequent impacts on the structure and properties of the polyamide (PA) selective layer were investigated. The hydrophilicity and dispersibility of PDNPs-M exhibited an upward trend with the Arg content. Furthermore, Arg doping contributes to a denser and smoother PA layer. Among the TFC and TFN membranes, TFN-PDNPs-IV exhibited a water permeability of 3.89 L·m·h·bar (55.1% higher than that of TFC-0) with a NaCl rejection rate of 98.8%, signifying superior water/salt selectivity. Additionally, TFN-PDNPs-IV exhibited regular pressure stability, commendable acid/alkali stability, and enhanced antifouling properties. These findings highlight the significant impact of nanoparticle hydrophilic functional groups on the structural and functional attributes of TFN membranes, offering a promising approach for developing advanced reverse osmosis membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c13195DOI Listing

Publication Analysis

Top Keywords

tfn membranes
12
situ interfacial
8
thin-film nanocomposite
8
reverse osmosis
8
tfn-pdnps-iv exhibited
8
membranes
5
interfacial polymerized
4
polymerized arginine-doped
4
arginine-doped polydopamine
4
polydopamine thin-film
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!