AI Article Synopsis

  • * Understanding how endothelial cells change during vascular disease can reveal new clinical treatment targets, and single-cell RNA sequencing helps analyze these changes.
  • * This study uses advanced techniques like deep learning and gene set scoring to assess the stages of vascular disease and identify metabolic patterns, aiming to find ways to maintain healthy endothelial function in disease conditions.

Article Abstract

Vascular disease is one of the major causes of death worldwide. Endothelial cells are important components of the vascular structure. A better understanding of the endothelial cell changes in the development of vascular disease may provide new targets for clinical treatment strategies. Single-cell RNA sequencing can serve as a powerful tool to explore transcription patterns, as well as cell type identity. Our current study is based on comprehensive scRNA-seq data of several types of human vascular disease datasets with deep-learning-based algorithm. A gene set scoring system, created based on cell clustering, may help to identify the relative stage of the development of vascular disease. Metabolic preference patterns were estimated using a graphic neural network model. Overall, our study may provide potential treatment targets for retaining normal endothelial function under pathological situations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-023-00591-xDOI Listing

Publication Analysis

Top Keywords

vascular disease
20
comprehensive scrna-seq
8
endothelial cell
8
metabolic preference
8
human vascular
8
development vascular
8
vascular
6
disease
5
scrna-seq model
4
model reveals
4

Similar Publications

Aims: Previous studies have shown that eGDR and TyG, as indicators of insulin resistance (IR), were key risk factors for cardiovascular disease (CVD). Our study further explored the relationship between eGDR change and new-onset CVD, and compared the predictive value of eGDR change, eGDR and TyG.

Materials And Methods: A total of 2895 participants without CVD at baseline from the China Health and Retirement Longitudinal Study (CHARLS) were included, using K-means clustering and cumulative eGDR to measure eGDR change between 2012 and 2015.

View Article and Find Full Text PDF

Background: Kidney transplantation is the ultimate treatment for end-stage kidney disease. Function of the kidney graft is not only dependent on medical factors but also on a complication-free surgical procedure. In the event of major surgical complications, the kidney graft is potentially lost and the patient will return to the waiting list which may be long.

View Article and Find Full Text PDF

Background: Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC).

Methods: This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses.

View Article and Find Full Text PDF

Background: The pathogenesis of acute kidney injury (AKI) is not fully understood. Tax1-binding protein 1 (TAX1BP1) modulates inflammation and apoptosis through the NF-kB signaling pathway, however, its specific role in ischemic AKI remains unclear.

Methods: We injected a TAX1BP1 overexpression plasmid into the tail vein of male C57BL/6 mice, followed by clamping the bilateral renal arteries to induce AKI.

View Article and Find Full Text PDF

Panoramic Nailfold Flow Velocity Measurement Method Based on Enhanced Plasma Gap Information.

J Imaging Inform Med

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.

Nailfold microcirculation examination is crucial for the early differential diagnosis of diseases and indicating their severity. In particular, panoramic nailfold flow velocity measurements can provide direct quantitative indicators for the study of vascular diseases and technical support to assess vascular health. Previously, nailfold imaging equipment was limited by a small field of view.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!