Purpose: This study investigated the clinical characteristics of patients with PROM1-related inherited retinal diseases (IRDs).
Methods: Patients diagnosed with IRDs who had mutations in PROM1 were identified at Linkou Chang Gung Memorial Hospital and Kaohsiung Medical University Hospital in Taiwan. Information on clinical characteristics and best-corrected visual acuity was recorded. Color fundus (CF) images, fundus autofluorescence photography (FAF), spectral-domain optical coherence tomography (SD-OCT), and electroretinograms (ERGs) were analyzed to examine patient phenotypes. PROM1 variants were detected using whole exome sequencing and verified by Sanger sequencing.
Results: Fourteen patients from nine families with PROM1-related IRDs were analyzed. Most patients exhibited chorioretinal atrophy in the macular area, with or without extramacular involvement on CF. Similarly, hypo-autofluorescence confined to the macular area, with or without extramacular involvement, was present for most patients on FAF. Furthermore, SD-OCT revealed outer retinal tubulations and focal or diffuse retinal thinning. ERGs showed variable findings, including maculopathy with normal ERG, subnormal cone response, and extinguished rod and cone responses. We detected five variants of the PROM1 gene, including c.139del, c.794del, c.1238T>A, c.2110C>T, and c.1117C>T.
Conclusions: In this study, we evaluated 14 Taiwanese patients with five PROM1 variants. Additionally, incomplete penetrance of heterozygous PROM1 variants was observed. Furthermore, patients with autosomal dominant PROM1 variants had lesions in the macular area and the peripheral region of the retina. SD-OCT serves as a useful tool for early detection of PROM1-related IRDs, as it captures certain signs of such diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664721 | PMC |
http://dx.doi.org/10.1167/iovs.64.14.25 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!