[What if the origin of FAPs was contributing to their heterogeneity in muscle?].

Med Sci (Paris)

Institut RESTORE, UMR Inserm 1301 / CNRS 5070, Toulouse, France.

Published: November 2023

Fibro-adipogenic progenitors (FAPs) are resident mesenchymal stromal cells (MSCs) of skeletal muscle. They play a crucial role in muscle homeostasis and regeneration through their paracrine activity. Recent technological advances in single-cell RNA sequencing have allowed the characterization of the heterogeneity within this cell population. In this article, we will present the different subpopulations of FAPs under basal, injury, or degenerative conditions, as well as their associated functions in mice and humans. We will then discuss the potential extramuscular origin of a post-injury FAP population. Indeed, our recent work demonstrates that MSCs from adipose tissue, infiltrating the muscle, could contribute to FAP heterogeneity.

Download full-text PDF

Source
http://dx.doi.org/10.1051/medsci/2023129DOI Listing

Publication Analysis

Top Keywords

[what origin
4
origin faps
4
faps contributing
4
contributing heterogeneity
4
heterogeneity muscle?]
4
muscle?] fibro-adipogenic
4
fibro-adipogenic progenitors
4
progenitors faps
4
faps resident
4
resident mesenchymal
4

Similar Publications

The Zika virus (ZIKV), an arbovirus within the Flavivirus genus, is associated with severe neurological complications, including Guillain-Barré syndrome in affected individuals and microcephaly in infants born to infected mothers. With no approved vaccines or antiviral treatments available, there is an urgent need for effective therapeutic options. This study aimed to identify new natural compounds with inhibitory potential against the NS2B-NS3 protease (PDB ID: 5LC0), an essential enzyme in viral replication.

View Article and Find Full Text PDF

The earliest named stromatolite Cryptozoon Hall, 1884 (Late Cambrian, ca. 490 Ma, eastern New York State), was recently re-interpreted as an interlayered microbial mat and non-spiculate (keratosan) sponge deposit. This "classic stromatolite" is prominent in a fundamental debate concerning the significance or even existence of non-spiculate sponges in carbonate rocks from the Neoproterozoic (Tonian) onwards.

View Article and Find Full Text PDF

Neutrophil Extracellular Traps Induce Brain Edema Around Intracerebral Hematoma via ERK-Mediated Regulation of MMP9 and AQP4.

Transl Stroke Res

December 2024

Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.

Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.

View Article and Find Full Text PDF

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

Recent changes in climate and environments have promoted the range expansion of insect pests of tropical and subtropical origins into temperate regions. For more accurate and faster risk assessment of this expansion, we developed a novel indicator to link a physiologically derived parameter of chilling injury with the survival of insect populations in nature by using two insects, Spodoptera frugiperda and Cicadulina bipunctata with tropical and subtropical origins, and one cool-adapted insect, Laodelphax striatellus. The parameter derived from a proportional increment in the time to 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!