Objective: Ischemia-reperfusion injury is thought to be the most important factor affecting the success of liver surgery. Pregabalin has been studied to prevent ischemic reperfusion injury in many organs. The aim of this study was to investigate the role of pregabalin in preventing liver ischemic injury.

Materials And Methods: 40 male Wistar-Albino rats, 6-8 weeks old, were divided into 5 groups. Four groups other than the sham group were subjected to hepatic ischemia for 1 hour, followed by 2 hours of reperfusion. Effects of 30 mg/and 60 mg/kg pregabalin were evaluated by aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor α (TNF-α), nuclear factor-kappa B (NF-кB), interleukin (IL)-6 levels, measured in blood samples collected before and after ischemia. Apoptosis was measured by caspase-3, and tissue samples were evaluated for ischemia by histopathologic examination.

Results: The 60 mg pregabalin group was significantly superior (p=0.024) to the N-acetylcysteine group and the 30 mg pregabalin group for AST levels (p=0.612 and p=0.807, respectively). The difference between before and after ischemia-reperfusion blood TNF-α levels was higher in the 60 mg pregabalin group, but not significantly different from the 30 mg pregabalin and N-acetylcysteine groups (p>0.05). Tissue TNF-α levels showed that 60 mg and 30 mg pregabalin treatment was more effective than no-treatment (p=0.011, p=0.033, respectively), but not superior to N-acetylcysteine (p>0.05).

Conclusions: It has been found that ischemia-reperfusion causes damage to the liver, and this damage may be irreversible if no treatment is given. Our study group, pregabalin molecule was found to be significantly effective in preventing ischemia-reperfusion injury and may have a therapeutic advantage over N-acetylcysteine.

Download full-text PDF

Source
http://dx.doi.org/10.26355/eurrev_202311_34307DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
12
pregabalin group
12
group pregabalin
12
pregabalin
9
tnf-α levels
8
group
6
ischemia-reperfusion
5
pre-treatment pregabalin
4
pregabalin reduces
4
liver
4

Similar Publications

Ischemia-reperfusion injury (IRI) is a major obstacle in liver transplantation, especially with steatotic donor livers. Dysbiosis of the gut microbiota has been implicated in modulating IRI, and plays a pivotal role in regulating host inflammatory and immune responses, but its specific role in liver transplantation IRI remains unclear. This study explores whether can mitigate IRI and its underlying mechanisms.

View Article and Find Full Text PDF

Remote ischemic conditioning (RIC), including pre-conditioning (RIPC, before the ischemic event), per-conditioning (RIPerC, during the ischemic event), and post-conditioning (RIPostC, after the ischemic event), protects the liver in animal hepatic ischemia-reperfusion injuries models. However, several questions regarding the optimal timing of intervention and administration protocols remain unanswered. Therefore, the preclinical evidence on RIC in the HIRI models was systematically reviewed and meta-analyzed in the present review to provide constructive and helpful information for future works.

View Article and Find Full Text PDF

Background: (BC), also named Niuhuang in Chinese, is utilized as a resuscitation drug in Traditional Chinese Medicine (TCM) for the treatment of neurological disorders. Ischemic stroke (IS) is a significant global public health issue that currently lacks safe and effective therapeutic drugs. Ongoing efforts are focused on identifying effective treatment strategies from Traditional, Complementary, and Integrative Medicine.

View Article and Find Full Text PDF

DL-3-n-butylphthalide (NBP) exhibits promising pharmacological efficacy against ischemia-reperfusion injury, but its protective effects may involve many mechanisms that are yet to be fully understood. This study aimed to profile the metabolic alterations induced by NBP during the process of ischemia-reperfusion using spatial metabolomics. Our study found that NBP could significantly reduce the ischemic area and restore physical function by potentially modulating pathways of the citrate cycle, pyruvate metabolism, autophagy, and unsaturated fatty acid biosynthesis.

View Article and Find Full Text PDF

Piceatannol upregulates USP14-mediated GPX4 deubiquitination to inhibit neuronal ferroptosis caused by cerebral ischemia-reperfusion in mice.

Food Chem Toxicol

January 2025

Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China. Electronic address:

Ischemic stroke is a very common brain disorder. This study aims to assess the neuroprotective effects of piceatannol (PCT) in preventing neuronal injury resulting from cerebral ischemia and reperfusion (I/R) in mice. Additionally, we investigated the underlying mechanisms through which PCT inhibits neuronal ferroptosis by modulating the USP14/GPX4 signaling axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!