Objective: The aim of this study was to predict the mechanism of Osteoking in preventing deep vein thrombosis (DVT) of the lower limb by network pharmacology and molecular docking.
Materials And Methods: The relevant active components and targets of Osteoking were collected through the TCMSP database, and the relevant disease targets of DVT were collected through the GeneCards, OMIM, and DisGeNET databases. The intersecting gene targets of Osteoking and DVT were obtained using Venny 2.1.0 software. PPI network construction and core target selection using Cytoscape 3.9.0 software. The Metascape database was used for GO and KEGG enrichment analysis of relevant targets. Finally, the molecular docking of the main active components and key targets was carried out.
Results: There are 361 potential targets and 71 core targets of Osteoking in preventing deep vein thrombosis of the lower limb. Signal pathways are involved in various diseases such as cancer, diabetic complications, atherosclerosis, and more. Some of the most common pathways include AGE-RAGE signaling pathway and Calcium signaling pathway. Molecular docking results showed that the main active components of Osteoking had relatively stable binding activities with the key targets.
Conclusions: Osteoking can play a role through multiple targets and multiple signal pathways to prevent the formation of deep venous thrombosis of the lower limb after fracture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.26355/eurrev_202311_34301 | DOI Listing |
Sci Rep
January 2025
La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, Australia.
Few studies have explored hip morphology and cartilage composition in female athletes or the impact of asymmetric repetitive loading, such as occurs during softball pitching. The current cross-sectional study assessed bilateral bony hip morphology on computed tomography imaging in collegiate-level softball pitchers ('Pitch1', n = 25) and cross-country runners ('Run', n = 13). Magnetic resonance imaging was used to assess cartilage relaxation times in a second cohort of pitchers ('Pitch2', n = 10) and non-athletic controls ('Con', n = 4).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District 100070, Beijing, China.
Deep vein thrombosis (DVT) in patients undergoing endoscopic endonasal surgery remains underexplored, despite its potential impact on postoperative recovery. This study aimed to develop and validate a predictive nomogram for assessing the risk of lower-limb DVT in such patients without chemoprophylaxis. A retrospective analysis was conducted on 935 patients with postoperative lower-limb vein ultrasonography.
View Article and Find Full Text PDFAnn Vasc Surg
January 2025
Department of Vascular and Endovascular Surgery - Tertiary Aortic Center, Pitie-Salpêtrière University Hospital, 47-83 Bd de l'Hôpital, Paris, France; Sorbonne Université, Paris, France. Electronic address:
Objective: Chronic limb-threatening ischemia (CLTI) requires revascularization whenever it is possible. The great saphenous vein represents the surgical conduit of choice. However, it is not always available, in particular in multi-operated patients.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Roth | McFarlane Hand & Upper Limb Center, St Joseph's Health Care London, London, ON, Canada.
Background: Precise and accurate glenoid preparation is important for the success of shoulder arthroplasty. Despite advancements in preoperative planning software and enabling technologies, most surgeons execute the procedure manually. Patient-specific instrumentation (PSI) facilitates accurate glenoid guide pin placement for cannulated reaming; however, few commercially available systems offer depth of reaming control.
View Article and Find Full Text PDFJ Arthroplasty
January 2025
The University of Tennessee Health Science Center-Campbell Clinic Department of Orthopaedic Surgery and Biomedical Engineering, 1400 S. Germantown Rd, Germantown, TN, 38138. Electronic address:
Background: This study investigated the influence of surgical alignment techniques on knee joint biomechanics during stair negotiation tasks. Our hypothesis was that a more personalized joint alignment would result in reduced medial knee loading biomechanics to negotiate the stairs.
Methods: There were 28 adults (14 mechanical alignments [MA], 14 kinematic alignment [KA]) who underwent total knee arthroplasty (TKA) at least one year post-operatively and performed five stair ascent and descent trials at their preferred velocities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!