Introduction: Running-related injuries are prevalent in the military and are often related to physical fitness test training. Non-rearfoot striking while running is known to increase the risk of Achilles tendon injuries because of the high eccentric energy absorption by the elastic components of the planarflexor muscle-tendon complex. However, there is limited evidence to suggest benefits of converting runners with Achilles tendon pain to use a rearfoot strike.

Methods: This is a case series of two active-duty Service members with chronic, running-related Achilles tendon pain that utilized a natural non-rearfoot strike pattern. Both patients were trained to utilize a rearfoot strike while running through the use of real-time visual feedback from wearable sensors.

Results: The trained rearfoot strike pattern was retained for over one month after the intervention, and both patients reported improvements in pain and self-reported function.

Conclusions: This case series demonstrated the clinical utility of converting two non-rearfoot strike runners to a rearfoot strike pattern to decrease eccentric demands on the plantarflexors and reduce Achilles tendon pain while running.

Download full-text PDF

Source
http://dx.doi.org/10.1093/milmed/usad436DOI Listing

Publication Analysis

Top Keywords

rearfoot strike
16
tendon pain
16
achilles tendon
16
case series
12
strike pattern
12
non-rearfoot strike
8
rearfoot
5
tendon
5
pain
5
strike
5

Similar Publications

Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability.

View Article and Find Full Text PDF

Comparison of shank, rearfoot and forefoot coordination and its variability between runners with different strike patterns.

J Biomech

January 2025

School of Exercise and Health, Shanghai University of Sport, Hengren Rd. 200, Yangpu District, Shanghai 200438, China. Electronic address:

This study aims to compare shank, rearfoot and forefoot coordination and its variability between runners with habitual rearfoot strike (RFS) and non-RFS (NRFS). 58 healthy males participated in this study (32 RFS, 26 NRFS). Coordination patterns and variability were assessed for the shank, rearfoot, and forefoot segments using a modified vector coding technique during running.

View Article and Find Full Text PDF

Accuracy of self-reported foot strike pattern detection among endurance runners.

Front Sports Act Living

December 2024

Exercise and Functional Fitness Laboratory, Department of Physical Medicine and Rehabilitation, University of Florida, Gainesville, FL, United States.

Introduction: Foot strike pattern is often associated with running related injury and the focus of training and rehabilitation for athletes. The ability to modify foot strike pattern depends on awareness of foot strike pattern before being able to attempt change the pattern. Accurate foot strike pattern detection may help prevent running related injury (RRI) and facilitate gait modifications and shoe transitions.

View Article and Find Full Text PDF

Effects of habitual foot strike patterns on patellofemoral joint and Achilles tendon loading in recreational runner.

Gait Posture

December 2024

Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China. Electronic address:

Background: Most running biomechanics studies have focused on either the patellofemoral joint (PFJ) or Achilles tendon (AT) alone, generating fragmented understanding of how these structures interact as components of an integrated kinetic chain during running. This study was to investigate concurrent biomechanical changes in the PFJ and AT in recreational runners.

Methods: The recreational runners who are accustomed to run with rearfoot strike (RFS, n = 15) and forefoot strike (FFS, n = 15) patterns were recruited.

View Article and Find Full Text PDF

Background: In-clinic gait retraining has been effective in modifying suspected biomechanical risk factors for running injury, but its feasibility is often limited by multiple clinic visits. This randomized clinical trial investigated the effects of a telehealth-based gait retraining intervention on running biomechanics, pain, and function in previously injured runners.

Methods: Twenty-three participants recovering from lower extremity injuries were randomized to a control or intervention group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!