Signature precursor and mature microRNAs in cervical ripening during gestational diabetes mellitus lead to pre-term labor and other impediments in future.

J Diabetes Metab Disord

Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India.

Published: December 2023

Unlabelled: Gestational diabetes mellitus (GDM) is a pathological condition in which the placenta releases a hormone called human placental lactogen that prevents maternal insulin uptake. GDM is characterised by varying degrees of carbohydrate intolerance and is first identified during pregnancy. Around 5-17% of pregnancies are GDM pregnancies. Older or obese women have a higher risk of developing GDM during gestation. Hyperglycemia is a classic manifestation of GDM and leads to alterations in eNOS and iNOS expression and subsequently causes ROS and RNS overproduction. ROS and RNS play an important role in maintaining normal physiology, when present in low concentrations. Increased concentrations of ROS is harmful and can cause cellular and tissue damage. Oxidative stress is defined as an imbalance between pro-oxidant and antioxidant molecules that manifests due to hyperglycemia. miRNAs are short, non-coding RNAs that play a critical role in regulating gene expression. Studies have shown that the placenta expresses more than 500 miRNAs, which play a crucial role in trophoblast division, movement, and apoptosis. Latest research has revealed that hyperglycemic conditions and increased oxidative stress, characteristic of GDM, can lead to the dysregulation of miRNAs. The placenta also releases miRNAs into the maternal circulation. The secreted miRNAs are encapsulated in exosomes or vesicles. These exosomes interact with tissues and organs at distant sites, releasing their cargo intracellularly. This crosstalk between hyperglycemia, ROS and miRNA expression in GDM has detrimental effects on both foetal and maternal health. One of the complications of GDM is preterm labour. GDM induced iNOS expression has been implicated in cervical ripening, which in turn causes preterm birth. This article focuses on the speculations of oxidative and nitrative stress markers that lead to detrimental effects in GDM. We have also envisaged the role of non-coding miRNA interactions in regulating gene expression for oxidative damage.

Graphical Abstract: . I)(A) Placenta as a metabolic organ that provides the foetus with nutrients, oxygen and hormones to maintain pregnancy. Human placental lactogen (hPL) is one such hormone that is released into maternal circulation. hPL is known to induce insulin resistance. (B) ß-cell dysfunction leads to reduced glucose sensing and insulin production. Insulin resistance, a characteristic of GDM, exacerbates insulin ß cell dysfunction leading to maternal hyperglycemia. Hyperglycemia leads to increased ROS and RNS production through several mechanisms. Consequently, GDM is characterised by increased oxidative and nitrative stress.II)Exposure to maternal hyperglycemia causes increased ROS and RNS production in trophoblast cells. Oxidative stress caused by hyperglycemia may lead to eNOS uncoupling, causing eNOS to behave as a superoxide producing enzyme. iNOS expression in trophoblast cells leads to increased NO production. iNOS-derived NO reacts with ROS to produce RNS, thereby increasing nitrosative stress. Expression of antioxidant defences are reduced. Hyperglycemia and oxidative stress may alter the expression of some miRNAs. Some miRNAs are upregulated while others are downregulated. Some miRNAs are secreted into maternal circulation in the form of exosomes. Oxidative stress markers, nitrative stress markers and circulating miRNAs are found to be increased in maternal circulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638342PMC
http://dx.doi.org/10.1007/s40200-023-01232-2DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
ros rns
16
maternal circulation
16
gdm
12
inos expression
12
stress markers
12
mirnas
9
cervical ripening
8
gestational diabetes
8
diabetes mellitus
8

Similar Publications

Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.

View Article and Find Full Text PDF

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

Background: Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproductive and metabolic abnormalities. The aim of this study was to elucidate the effects of Schisandra rubriflora (S. rubriflora) on PCOS and its related mechanisms using network pharmacology, molecular docking and in vitro experiments.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!