Prostate cancer (PCa) tops the list of cancer-related deaths in men worldwide. Prostate-specific membrane antigen (PSMA) is currently the most prominent PCa biomarker, as its expression levels are robustly enhanced in advanced stages of PCa. As such, PSMA targeting is highly efficient in PCa imaging as well as therapy. For the latter, PSMA-positive tumors can be targeted directly by using small molecules or macromolecules with cytotoxic payloads or indirectly by engaging the immune system of the host. Here we describe the engineering, expression, purification, and biological characterization of bispecific T-cell engagers (BiTEs) that enable targeting PSMA-positive tumor cells by host T lymphocytes. To this end, we designed the 5D3-αCD3 BiTE as a fusion of single-chain fragments of PSMA-specific 5D3 and anti-CD3 antibodies. Detailed characterization of BiTE was performed by a combination of size-exclusion chromatography, differential scanning fluorimetry, and flow cytometry. Expressed in insect cells, BiTE was purified in monodisperse form and retained thermal stability of both functional parts and nanomolar affinity to respective antigens. 5D3-αCD3's efficiency and specificity were further evaluated using PCa-derived cell lines together with peripheral blood mononuclear cells isolated from human blood. Our data revealed that T-cells engaged via 5D3-αCD3 can efficiently eliminate tumor cells already at an 8 pM BiTE concentration in a highly specific manner. Overall, the data presented here demonstrate that the 5D3-αCD3 BiTE is a candidate molecule of high potential for further development of immunotherapeutic modalities for PCa treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644396PMC
http://dx.doi.org/10.1021/acsptsci.3c00159DOI Listing

Publication Analysis

Top Keywords

prostate cancer
8
bispecific t-cell
8
t-cell engagers
8
prostate-specific membrane
8
membrane antigen
8
tumor cells
8
5d3-αcd3 bite
8
cells bite
8
pca
5
bite
5

Similar Publications

Mercury(II) is highly toxic thus the selective and sensitive detection of Hg(II) is important. This research article deals with the synthesis and characterization of the fluorogenic system based on diselenide containing rhodamine by single crystal XRD. The probe has been used for selective detection of Hg(II) in aqueous media with detection limit of 62.

View Article and Find Full Text PDF

Lung cancer is the third most prevalent cancer, following breast cancer in women and prostate cancer in men. However, it remains the leading cause of cancer-related mortality. As treatment options have advanced, the significance of accurate diagnosis has increased, enabling targeted and more personalized therapeutic treatments.

View Article and Find Full Text PDF

Introduction: This retrospective study aims to evaluate the long-term efficacy and urinary toxicity of LDR-brachytherapy for localized prostate cancer.

Materials And Methods: 235 primary prostate cancer patients treated with LDR-brachytherapy and subsequently followed up in our center were included in this study. Biochemical relapse free survival (bRFS), overall survival (OS), and cancer-specific survival (CSS) were evaluated.

View Article and Find Full Text PDF

Introduction: Gallium-68 prostate-specific membrane antigen positron emission tomography (Ga-PSMA PET) is being increasingly used in patients with prostate cancer (PCa) for the staging and detection of lymph node (LN) metastases, despite a lack of prospective, validated evidence. We aimed to investigate the relationship between the PSMA PET findings (maximum standardized uptake [SUV] value) and the final histopathology results (Gleason Grade [GG], and LN positivity) in patients undergoing radical prostatectomy.

Methods: This is a single centre, prospective, observational study of 63 consecutive eligible patients treated at a tertiary care centre in India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!