Cardiac septal defect is the most prevalent congenital heart disease and is typically treated with open-heart surgery under cardiopulmonary bypass. Since the 1990s, with the advancement of interventional techniques and minimally invasive transthoracic closure techniques, cardiac occluder implantation represented by the Amplazter products has been the preferred treatment option. Currently, most occlusion devices used in clinical settings are primarily composed of Nitinol as the skeleton. Nevertheless, long-term follow-up studies have revealed various complications related to metal skeletons, including hemolysis, thrombus, metal allergy, cardiac erosion, and even severe atrioventricular block. Thus, occlusion devices made of biodegradable materials have become the focus of research. Over the past two decades, several bioabsorbable cardiac occluders for ventricular septal defect and atrial septal defect have been designed and trialed on animals or humans. This review summarizes the research progress of bioabsorbable cardiac occluders, the advantages and disadvantages of different biodegradable polymers used to fabricate occluders, and discusses future research directions concerning the structures and materials of bioabsorbable cardiac occluders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.35351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!