Optothermal nanotweezers have emerged as an innovative optical manipulation technique in the past decade, which revolutionized classical optical manipulation by efficiently capturing a broader range of nanoparticles. However, the optothermal temperature field was merely employed for in-situ manipulation of nanoparticles, its potential for identifying bio-nanoparticles remains largely untapped. Hence, based on the synergistic effect of optothermal manipulation and CRIPSR-based bio-detection, we developed CRISPR-powered optothermal nanotweezers (CRONT). Specifically, by harnessing diffusiophoresis and thermo-osmotic flows near the substrate upon optothermal excitation, we successfully trapped and enriched DNA functionalized gold nanoparticles, CRISPR-associated proteins, as well as DNA strands. Remarkably, we built an optothermal scheme for enhancing CRISPR-based single-nucleotide polymorphism (SNP) detection at single molecule level, while also introducing a novel CRISPR methodology for observing nucleotide cleavage. Therefore, this innovative approach has endowed optical tweezers with DNA identification ability in aqueous solution which was unattainable before. With its high specificity and feasibility for in-situ bio-nanoparticle manipulation and identification, CRONT will become a universal tool in point-of-care diagnosis, biophotonics, and bio-nanotechnology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654382 | PMC |
http://dx.doi.org/10.1038/s41377-023-01326-9 | DOI Listing |
Adv Phys X
October 2024
Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA.
Optofluidics is dedicated to achieving integrated control of particle and fluid motion, particularly on the micrometer scale, by utilizing light to direct fluid flow and particle motion. The field has seen significant growth recently, driven by the concerted efforts of researchers across various scientific disciplines, notably for its successful applications in biomedical science. In this review, we explore a range of optofluidic architectures developed over the past decade, with a primary focus on mechanisms for precise control of micro and nanoscale biological objects and their applications in sensing.
View Article and Find Full Text PDFLight Sci Appl
November 2023
State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China.
Optothermal nanotweezers have emerged as an innovative optical manipulation technique in the past decade, which revolutionized classical optical manipulation by efficiently capturing a broader range of nanoparticles. However, the optothermal temperature field was merely employed for in-situ manipulation of nanoparticles, its potential for identifying bio-nanoparticles remains largely untapped. Hence, based on the synergistic effect of optothermal manipulation and CRIPSR-based bio-detection, we developed CRISPR-powered optothermal nanotweezers (CRONT).
View Article and Find Full Text PDFAdv Mater
March 2024
State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China.
Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials.
View Article and Find Full Text PDFOptical manipulation of colloidal nanoparticles and molecules is significant in numerous fields. Opto-thermoelectric nanotweezers exploiting multiple coupling among light, heat, and electric fields enables the low-power optical trapping of nanoparticles on a plasmonic substrate. However, the management of light-to-heat conversion for the versatile and precise manipulation of nanoparticles is still elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!