Lumbar spinal stenosis (LSS) is a degenerative disease characterized by intermittent claudication and numbness in the lower extremities. These symptoms are caused by the compression of nerve tissue in the lumbar spinal canal. Ligamentum flavum (LF) hypertrophy and spinal epidural lipomatosis in the spinal canal are known to contribute to stenosis of the spinal canal: however, detailed mechanisms underlying LSS are still not fully understood. Here, we show that surgically harvested LFs from LSS patients exhibited significantly increased thickness when transthyretin (TTR), the protein responsible for amyloidosis, was deposited in LFs, compared to those without TTR deposition. Multiple regression analysis, which considered age and BMI, revealed a significant association between LF hypertrophy and TTR deposition in LFs. Moreover, TTR deposition in LF was also significantly correlated with epidural fat (EF) thickness based on multiple regression analyses. Mesenchymal cell differentiation into adipocytes was significantly stimulated by TTR in vitro. These results suggest that TTR deposition in LFs is significantly associated with increased LF hypertrophy and EF thickness, and that TTR promotes adipogenesis of mesenchymal cells. Therapeutic agents to prevent TTR deposition in tissues are currently available or under development, and targeting TTR could be a potential therapeutic approach to inhibit LSS development and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654520PMC
http://dx.doi.org/10.1038/s41598-023-47282-7DOI Listing

Publication Analysis

Top Keywords

ttr deposition
20
lumbar spinal
12
spinal canal
12
ttr
9
ligamentum flavum
8
correlated epidural
8
epidural fat
8
spinal stenosis
8
multiple regression
8
deposition lfs
8

Similar Publications

Transthyretin Cardiac Amyloidosis: Current and Emerging Therapies.

Curr Cardiol Rep

January 2025

The Pauley Heart Center, Virginia Commonwealth University, 1200 East Broad Street West Hospital, 8th Floor, West Wing, Richmond, VA, 23231, USA.

Purpose Of Review: In this article, we describe current and newer TTR stabilizers, TTR silencers which include small interfering RNA agents (siRNA), antisense oligonucleotides (ASO) and CRISPR-Cas9 gene editing, and TTR depleters, which investigates the use of monoclonal antibodies to remove amyloid fibril deposits for patients with advanced disease.

Recent Findings: Once thought to be a rare and fatal condition, increased recognition, improved non-invasive diagnostic tools, and the explosive development of novel therapies, has transformed the landscape of transthyretin amyloid cardiomyopathy (ATTR-CM). Advances in cardiac imaging with respect to echocardiography, cardiac magnetic resonance imaging (CMR), and radionuclide bone scintigraphy has increased the diagnosis of ATTR-CM over the last twenty years.

View Article and Find Full Text PDF

Amyloidosis is a rare pathology characterized by protein deposits in various organs and tissues. Cardiac amyloidosis (CA) can be caused by various protein deposits, but transthyretin amyloidosis (ATTR) and immunoglobulin light chain (AL) are the most frequent pathologies. Protein misfolding can be induced by several factors such as oxidative stress, genetic mutations, aging, chronic inflammation, and neoplastic disorders.

View Article and Find Full Text PDF

A Case of Transthyretin Cardiac Amyloidosis Coexisting With Rheumatoid Arthritis.

Cureus

December 2024

Graduate Medical Education (GME) Internal Medicine, Mary Washington Healthcare, Fredericksburg, USA.

Cardiac amyloidosis is a rare but increasingly recognized cause of heart failure, often underdiagnosed until later stages of the disease. This report describes a case of transthyretin amyloidosis (ATTR) in a 68-year-old male patient with a significant medical history of rheumatoid arthritis (RA), a combination seldom documented in the literature. The patient presented with progressive symptoms of heart failure, and diagnostic testing confirmed ATTR cardiac amyloidosis through pyrophosphate (PYP) scanning.

View Article and Find Full Text PDF

Repurposing of Agrochemicals as ATTRv Amyloidosis Inhibitors.

J Med Chem

January 2025

Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.

Transthyretin (TTR), a plasma protein, undergoes transformation into amyloid fibers, leading to ATTRv amyloidosis, a disease characterized by organ deposition of TTR amyloid fibrils and subsequent organ failure. Developing compounds that bind and kinetically stabilize TTR is a crucial strategy in the treatment of ATTRv amyloidosis. In this study, we narrowed 651 pesticide-related compounds down to 14 possible TTR binders through in silico screening; subsequent in vitro analysis revealed that 7 of them exhibited amyloid fibril formation inhibition activity.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis (ATTRv, v for variant) is a genetic disorder characterized by the deposition of misfolded transthyretin (TTR) protein in tissues, resulting in progressive dysfunction of multiple organs, including the nervous system, heart, kidneys, and gastrointestinal (GI) tract. Noninvasive serum biomarkers have become key tools for diagnosing and monitoring ATTRv. This review examines the role of available biomarkers for neurological, cardiac, renal, gastrointestinal, and multisystemic involvement in ATTRv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!