Applying specific circularity interventions to the food system may have environmental benefits. Using an iterative linear food system optimisation model (FOODSOM), we assess how changes in human diets, imports and exports, and the utilisation of waste streams impact land use and greenhouse gas emissions (GHG). After including these circularity principles, land use and GHG emissions were on average 40% and 68% lower than in the current food system, primarily driven by a reduction in production volumes and a shift towards feeding the domestic population. Shifting from the current diet to a circular diet decreased land use with 43% and GHG emissions with 52%. Allowing up to half of each nutrient in the human diet to be imported, while balancing imports with equal exports in terms of nitrogen, phosphorus and potassium, also decreased land use (up to 34%) and GHG emissions (up to 26%) compared to no imported food. Our findings show that circularity interventions should not be implemented mutually exclusively; by combining a circular diet with imported food and fully utilising waste streams, the lowest land use and GHG emissions can be realised.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10837400 | PMC |
http://dx.doi.org/10.1007/s13280-023-01953-x | DOI Listing |
Am J Clin Nutr
January 2025
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. Electronic address:
Background: Diet plays a vital role in human health and environmental effects. Monitoring diet quality and its relationship to both health and environment are essential for policy making.
Objectives: This study aimed to analyze trends in the Planetary Health Diet Index (PHDI) and its associations with daily greenhouse gas emissions from food (GHG), disease-related biomarkers, anthropometric measurements, obesity, and all-cause mortality in the US population.
Animal
December 2024
Scotland's Rural College (SRUC), Roslin Institute Building, Easter Bush Campus, Midlothian EH25 9RG, UK.
In the face of global climate threats, farm and land-management decisions must balance climate concerns with profitability, animal welfare, and ecosystem health. However, few comprehensive studies have quantified the relationship between animal welfare and greenhouse gas (GHG) emissions, and no study focuses specifically on sheep farms. The present study aims to quantify the effects of impaired welfare on GHG emissions for common welfare challenges faced in UK lowland (L) and hill (H) sheep farming systems.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
The water-level fluctuation zones (WLFZ) in Three Gorges Reservoir encounter several ecological challenges, particularly potential greenhouse gas (GHG) emissions and water eutrophication due to water level variations. Therefore, to address those challenges, our study explores the relationships between soil properties (Phosphorus cycle), plant conditions, microbial community, and GHG emissions. Our findings reveal that aboveground plants are the key link in the WLFZ ecosystem, which has previously been overlooked.
View Article and Find Full Text PDFSci Total Environ
January 2025
Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton South, Melbourne, Victoria 3169, Australia; Department of Agricultural Economics, University of the Free State, Bloemfontein 9300, South Africa.
Agricultural systems are important emission sources of non-CO greenhouse gases (GHGs), including the relatively short-lived GHG methane (CH). As a pivotal emitter, China's CH emissions have received wide attention. For the first time, this study applied an indicator of radiative forcing-based climate footprint (RFCF) to compare the climate impacts of China's on-farm non-CO GHG emissions including CH and nitrous oxide (NO).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Farm Management (410b), Institute of Farm Management, University of Hohenheim, Schwerzstraße 44, 70599, Stuttgart, Germany.
Agriculture accounts for a large proportion of global greenhouse gas (GHG) emissions. It is therefore crucial to identify effective and efficient GHG mitigation potentials in agriculture, but also in related upstream sectors. However, previous studies in this area have rarely undertaken a cross-sectoral assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!