A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coculture model of a liver sinusoidal endothelial cell barrier and HepG2/C3a spheroids-on-chip in an advanced fluidic platform. | LitMetric

Coculture model of a liver sinusoidal endothelial cell barrier and HepG2/C3a spheroids-on-chip in an advanced fluidic platform.

J Biosci Bioeng

Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France. Electronic address:

Published: January 2024

The liver is one of the main organs involved in the metabolism of xenobiotics and a key organ in toxicity studies. Prior to accessing the hepatocytes, xenobiotics pass through the hepatic sinusoid formed by liver sinusoidal endothelial cells (LSECs). The LSECs barrier regulates the kinetics and concentrations of the xenobiotics before their metabolic processing by the hepatocytes. To mimic this physiological situation, we developed an in vitro model reproducing an LSECs barrier in coculture with a hepatocyte biochip, using a fluidic platform. This technology made dynamic coculture and tissue crosstalk possible. SK-HEP-1 and HepG2/C3a cells were used as LSECs and as hepatocyte models, respectively. We confirmed the LSECs phenotype by measuring PECAM-1 and stabilin-2 expression levels and the barrier's permeability/transport properties with various molecules. The tightness of the SK-HEP-1 barrier was enhanced in the dynamic coculture. The morphology, albumin secretion, and gene expression levels of markers of HepG2/C3a were not modified by coculture with the LSECs barrier. Using acetaminophen, a well-known hepatotoxic drug, to study tissue crosstalk, there was a reduction in the expression levels of the LSECs markers stabilin-2 and PECAM-1, and a modification of those of CLEC4M and KDR. No HepG2/C3a toxicity was observed. The metabolisation of acetaminophen by HepG2/C3a monocultures and cocultures was confirmed. Although primary cells are required to propose a fully relevant model, the present approach highlights the potential of our system for investigating xenobiotic metabolism and toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2023.10.006DOI Listing

Publication Analysis

Top Keywords

lsecs barrier
12
expression levels
12
liver sinusoidal
8
sinusoidal endothelial
8
fluidic platform
8
cells lsecs
8
dynamic coculture
8
tissue crosstalk
8
lsecs
7
coculture
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!