Enhanced photolysis of tetracycline by Zn(II): Role of complexation.

Sci Total Environ

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Published: January 2024

Zn(II) is a necessary additive during antibiotic production and aquaculture, leading to the coexistence of Zn(II) and antibiotics in aquatic environment, especially in receiving waters of pharmaceutical and aquaculture wastewater. However, the roles of Zn(II) in the photochemical behavior of antibiotics are still not clear, which limits the understanding of the fate of antibiotic in nature. In this study, tetracycline (TC) was selected as typical antibiotic to evaluate the effect of Zn(II) on antibiotic photolysis. The removal of TC was accelerated by 22.75 % with TC:Zn(II) molar ratio at 1:5. The mechanism of Zn(II)-induced TC photolysis was explored via reactive oxygen species (ROS) analysis and density functional theory (DFT) calculation for the first time. Zn(II) could enhance the formation of TC excited states and further produce more singlet oxygen (12.54 % higher than control group) to promote indirect photolysis. Besides, Zn(II) could react with TC via complexation, and the complex was more vulnerable to attack by reactive oxygen species due to more active sites. Furthermore, the structure and toxicity of intermediates were identified with mass spectrometer, T.E.S.T. and ECOSAR software. Zn(II) hardly changed the degradation path of TC, and TC was mainly degraded via ring opening, demethylation, deamidation, and hydrogen abstraction with more toxic intermediates than the parent molecule. This work is significant to better understand the environmental fate of antibiotics, and also provides new insight into wastewater treatment in the pharmaceutical and aquaculture industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168484DOI Listing

Publication Analysis

Top Keywords

znii
8
pharmaceutical aquaculture
8
reactive oxygen
8
oxygen species
8
enhanced photolysis
4
photolysis tetracycline
4
tetracycline znii
4
znii role
4
role complexation
4
complexation znii
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!