Mitochondria-targeted SkQ1 nanoparticles for dry eye disease: Inhibiting NLRP3 inflammasome activation by preventing mitochondrial DNA oxidation.

J Control Release

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Published: January 2024

Dry eye disease (DED) is a multifactorial ocular surface disorder mutually promoted by reactive oxygen species (ROS) and ocular surface inflammation. NLRP3 is the key regulator for inducing ocular surface inflammation in DED. However, the mechanism by which ROS influences the bio-effects of NLRP3, and the consequent development of DED, largely remains elusive. In the present study, we uncovered that robust ROS can oxidate mitochondrial DNA (ox-mtDNA) along with loss of mitochondria compaction causing the cytosolic release of ox-mtDNA and subsequent co-localization with cytosolic NLRP3, which can promote the activation of NLRP3 inflammasome and stimulate NLRP3-mediated inflammation. Visomitin (also known as SkQ1), a mitochondria-targeted anti-oxidant, could reverse such a process by in situ scavenging of mitochondrial ROS. To effectively deliver SkQ1, we further developed a novel mitochondria-targeted SkQ1 nanoparticle (SkQ1 NP) using a charge-driven self-assembly strategy. Compared with free SkQ1, SkQ1 NPs exhibited significantly higher cytosolic- and mitochondrial-ROS scavenging activity (1.7 and 1.9 times compared to levels of the free SkQ1 group), thus exerting a better in vitro protective effect against HO-induced cell death in human corneal epithelial cells (HCECs). After topical administration, SkQ1 NPs significantly reduced in vivo mtDNA oxidation, while suppressing the expressions of NLRP3, Caspase-1, and IL-1β, which consequently resulted in better therapeutic effects against DED. Results suggested that by efficiently scavenging mitochondrial ROS, SkQ1 NPs could in situ inhibit DED-induced mtDNA oxidation, thus blocking the interaction of ox-mtDNA and NLRP3; this, in turn, suppressed NLRP3 inflammasome activation and NLRP3-mediated inflammatory signaling. Results suggested that SkQ1 NPs have great potential as a new treatment for DED.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.11.021DOI Listing

Publication Analysis

Top Keywords

skq1 nps
16
nlrp3 inflammasome
12
ocular surface
12
skq1
10
mitochondria-targeted skq1
8
dry eye
8
eye disease
8
nlrp3
8
inflammasome activation
8
mitochondrial dna
8

Similar Publications

Mitochondria-targeted SkQ1 nanoparticles for dry eye disease: Inhibiting NLRP3 inflammasome activation by preventing mitochondrial DNA oxidation.

J Control Release

January 2024

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Dry eye disease (DED) is a multifactorial ocular surface disorder mutually promoted by reactive oxygen species (ROS) and ocular surface inflammation. NLRP3 is the key regulator for inducing ocular surface inflammation in DED. However, the mechanism by which ROS influences the bio-effects of NLRP3, and the consequent development of DED, largely remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!