The α CTD (C-terminal domain of the α subunit) of RNA polymerase (RNAP) is a target for transcriptional regulators. In the transcription activation at Class I, Class II, and Class III promoters of bacteria, the transcriptional regulator, binds to DNA at different sites and interacts with the α CTD to stabilize the RNAP at the promoter or it binds to the α CTD to form a prerecruitment complex that searches for its cognate binding site. This 'simple recruitment mechanism' of the transcriptional machinery at the promoter is responsible for the activation of transcription. Strikingly, in B. subtilis the binding of RNAP at the promoter stabilizes the transcriptional regulator, δ at the -41 site of the promoter DNA through an interaction with its α CTD and successively facilitates the open complex formation. Two residues R293 and K294 of α CTD (equivalent to K297 and K298 of E. coli) are involved in the interactions with δ and essential for the activation of transcription. R293 is responsible for the stabilization of δ, while K294 is responsible for facilitating the open complex formation. Based on our data we propose a new model of transcription activation by δ of B. subtilis that is similar to (its binding location and interaction with α CTD), but distinct from (the recruitment of transcription factor by RNAP at the DNA, and enhancement of the open complex formation) the model Class II promoters in bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2023.168366 | DOI Listing |
Mol Biol Evol
January 2025
Center for Genomics and Systems Biology, Department of Biology, New York University.
Copy-number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India.
Eukaryotic Initiation Factor 4 (eIF4) is a group of factors that activates mRNA for translation and recruit 43S preinitiation complex (PIC) to the mRNA 5' end, forming the 48S PIC. The eIF4 factors include mRNA 5' cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffold protein eIF4G, which anchors eIF4A and eIF4E. Another eIF4 factor, eIF4B, stimulates the RNA helicase activity of eIF4A and facilitates mRNA recruitment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.
View Article and Find Full Text PDFSports Med Open
January 2025
Institute for Health and Sport, Victoria University, Melbourne, Australia.
Background: Despite their prominence in the sport and human movement sciences, to date, there is no systematic insight about the development and content of movement quality assessments in athletic populations. This is an important gap to address, as it could yield both practical and scientific implications related to the continued screening of movement quality in athletic contexts. Hence, this study aimed to systematically review the (i) developmental approach, (ii) movements included, (iii) scoring system utilised, and (iv) the reliability of movement competency assessments used in athletic populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!