In the current study, a new monoclonal antibody conjugated dual stimuli lipid-coated mesoporous silica nanoparticles (L-MSNs) platform was developed and investigated for specific co-delivery of the paclitaxel (PTX) and gemcitabine (Gem) to cancer cells and preventing their side effects during the treatment process. First, MSNs were synthesized and then coated with as-prepared pH-, and thermo-sensitive niosomes to produce L-MSNs. For this aim, Dipalmitoylphosphatidylcholine (DPPC) was used to create thermo-sensitivity, and 1, 2-Distearoyl-sn-glycerol-3-phosphoethanolamine -Citraconic Anhydride-Polyethylene Glycol (DSPE-CA-PEG) polymers were prepared and incorporated to the lipid layer for creation of pH-sensitivity. In the next step, trastuzumab as a monoclonal antibody (mAb) was conjugated to the maleimide groups of the 1, 2-Distearoyl-sn-glycerol-3-phosphoethanolamine DSPE-polyethylene glycol (PEG)-maleimide agents in the lipid bilayer via a disulfide bond. Dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM) analyses were utilized to characterize the synthesized particles before and after surface modification. The encapsulation efficiency (EE%) and loading efficiency (LE%) of the particles were also evaluated. Additionally, the drug release study and MTT assay were done to evaluate the bioactivity potential of the fabricated platforms. The results of DLS and zeta potential measurements revealed an average size of 200 nm and a neutral zeta potential of about -1 mV for mAb-L-MSNs. Also, the FTIR spectra confirmed the formation of mAb-L-MSNs. Moreover, SEM analysis showed spherical-shaped MSNs with amorphous structure confirmed by XRD analysis, and BET test revealed ∼ 820 m/g specific surface area and pore about 5 nm in size. The values of EE% and LE% of PTX were 90.3 % and 26.7 %, while these values for GEM were 89.5 % and 38.8 % in the co-loaded form, respectively. The thermo-pH-sensitivity examination showed approximately 500 nm of size increase after the change of pH and temperature from 7.4 and 37˚C to 5 and 42˚C. The release profile showed a pH-, and thermo-dependence manner, which led to about 89 % and 95 % of PTX and GEM released from the co-loaded platform at a pH of 5 and 42 °C while these values were 31.1 % and 32.2 % at pH of 7.4 and 37˚C, respectively. MTT assay data presented that when the mAb-L-co-loaded-MSNs platform containing 250 µg/mL drug was used, about 92 % of cells died in human epidermal receptors (HER2)-positive breast cancer cells (SKBR3), while just about 4 % of HER2-negative normal cells were killed. However, the growth inhibition rate of SKBR3 cells was caused by empty-mAb-L-MSNs, pure PTX and GEM combination were 9 % and 87 %, respectively. Moreover, the half inhibitory concentration (IC of the pure PTX, pure GEM, and mAb-coloaded-L-MSNs were 33, 17.6, and 6.5 µg/mL. The synergic effect of co-encapsulation of PTX and GEM in addition to trastuzumab conjugated L-MSNs was confirmed by a combinational index (CI) of 0.34. Therefore, this strategy leads to specific targeted drug delivery to cancer cells using a key-lock interaction between the trastuzumab and HER-2 receptors on the cancer cell membrane which stimuli the endocytosis of the particles to the cells followed by the destruction of the lipid layer in the acidic pH and the temperature of the lysosome, leading to enhanced release of PTX and GEM (pH of 5 and 42˚C). So, this platform can be considered a suitable carrier for cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123606DOI Listing

Publication Analysis

Top Keywords

ptx gem
16
cancer cells
12
zeta potential
12
lipid-coated mesoporous
8
her2-positive breast
8
breast cancer
8
monoclonal antibody
8
lipid layer
8
dls zeta
8
potential measurements
8

Similar Publications

Abnormal de novo lipogenesis and reprogramming of lipid metabolism have been associated with the development and progression of various cancers, including pancreatic cancer. Gemcitabine (GEM) combined with albumin-bound paclitaxel (nab-PTX) is the first-line chemotherapeutic agent for pancreatic cancer. There have been many studies on the molecular mechanisms of gemcitabine and paclitaxel in cancer treatment.

View Article and Find Full Text PDF

Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy.

Nanomaterials (Basel)

October 2024

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.

The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.

View Article and Find Full Text PDF
Article Synopsis
  • * The RNA nanotechnology facilitates co-delivery of nucleoside analogs (floxuridine and gemcitabine) alongside the chemotherapeutic paclitaxel, enhancing treatment efficacy for Triple-Negative Breast Cancer.
  • * The designed RNA nanoparticles exhibit spontaneous tumor targeting with minimal toxicity due to their negative charge, allowing safe drug circulation in the bloodstream and efficient drug loading during synthesis.
View Article and Find Full Text PDF
Article Synopsis
  • Triple-negative breast cancer (TNBC) is a challenging type of breast cancer without specific treatment targets, primarily relying on traditional chemotherapy methods, making it essential to explore new therapeutic strategies.
  • Researchers engineered extracellular vesicles (EVs) using RNA nanotechnology to deliver targeted therapies specifically to TNBC cells by optimizing them with survivin small interfering RNA (siRNA) and CD44 aptamer ligands.
  • The study found that these engineered EVs dramatically reduced the required doses of chemotherapy drugs like gemcitabine and paclitaxel, showing effective tumor growth inhibition while potentially minimizing side effects associated with standard chemotherapy treatments.
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease where standard-of-care chemotherapeutic drugs have limited efficacy due to the development of drug resistance and poor drug delivery caused by a highly desmoplastic tumor microenvironment. Combining multiple drugs in a tumor-targeting carrier would be a favorable approach to overcome these limitations. Hence, a tumor-targeted peptide (TTP) conjugated amphiphilic tri-block copolymer was developed to make targeted polymer nanoparticles (TTP-PNPs) serving as a vehicle for carrying gemcitabine (Gem), paclitaxel (PTX), and their combination (Gem + PTX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!