Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the growing exploration of marine resources, underwater image enhancement has gained significant attention. Recent advances in convolutional neural networks (CNN) have greatly impacted underwater image enhancement techniques. However, conventional CNN-based methods typically employ a single network structure, which may compromise robustness in challenging conditions. Additionally, commonly used UNet networks generally force fusion from low to high resolution for each layer, leading to inaccurate contextual information encoding. To address these issues, we propose a novel network called Cascaded Network with Multi-level Sub-networks (CNMS), which encompasses the following key components: (a) a cascade mechanism based on local modules and global networks for extracting feature representations with richer semantics and enhanced spatial precision, (b) information exchange between different resolution streams, and (c) a triple attention module for extracting attention-based features. CNMS selectively cascades multiple sub-networks through triple attention modules to extract distinct features from underwater images, bolstering the network's robustness and improving generalization capabilities. Within the sub-network, we introduce a Multi-level Sub-network (MSN) that spans multiple resolution streams, combining contextual information from various scales while preserving the original underwater images' high-resolution spatial details. Comprehensive experiments on multiple underwater datasets demonstrate that CNMS outperforms state-of-the-art methods in image enhancement tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2023.11.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!