Finding the best knockout strategy for coupling biomass growth and production of a target metabolite using a mathematic model of metabolism is a challenge in biotechnology. In this research, a three-step method named OptEnvelope is presented based on finding minimal set of active reactions for a target point in the feasible solution space (envelope) using a mixed-integer linear programming formula. The method initially finds the reduced desirable solution space envelope in the product versus biomass plot by removing all inactive reactions. Then, with reinsertion of the deleted reactions, OptEnvelope attempts to reduce the number of knockouts so that the desirable production envelope is preserved. Additionally, OptEnvelope searches for envelopes with higher minimum production rates or fewer knockouts by evaluating different target points within the desired solution space. It is possible to limit the maximal number of knockouts. The method was implemented on metabolic models of E. coli and S. cerevisiae to test the method benchmarking the capability of these industrial microbes for overproduction of acetate and glycerol under aerobic conditions and succinate and ethanol under anaerobic conditions. The results illustrate that OptEnvelope is capable to find multiple strong coupled envelopes located in the desired solution space because of its novel target point oriented strategy of envelope search. The results indicate that E. coli is more appropriate to produce acetate and succinate while S. cerevisiae is a better host for glycerol production. Gene deletions for some of the proposed reaction knockouts have been previously reported to increase the production of these metabolites in experiments. Both organisms are suitable for ethanol production, however, more knockouts for the adaptation of E. coli are required. OptEnvelope is available at https://github.com/lv-csbg/optEnvelope.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653430 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294313 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!