Purpose: Power absorbance measures recorded over a wide range of frequencies allow for clinical inferences about the outer/middle ears' acoustic mechanics. A frequency-dependent feature in the newborn wideband absorbance response, the prominent mid-frequency absorbance peak, has been linked to middle-ear resonance. However, current normative methods were not designed to assess subtle changes in such features. This work aims to develop and validate an absorbance peak template (APT) for assessment of absorbance peaks in newborns. Additional objectives are to compare test performance of absorbance peaks and APTs to existing normative methods, to demonstrate APT-based methods for categorization of abnormal absorbance peaks, and to describe absorbance peak test-retest variability.
Method: Peak absorbance and peak frequency were analyzed in a training data set (490 measurements in 84 newborn ears who passed transient evoked otoacoustic emissions [TEOAEs] screenings), and an APT was developed by computing normal limits on these two absorbance peak variables. Split-set analysis evaluated the reproducibility of APT, and test-retest analysis was performed. Test performance analysis, conveyed by area under the receiver operating characteristic curve (AROC) and 95% confidence intervals (CIs), compared absorbance peak variables to absorbance area indices (AAIs) in a validation data set (359 ears that passed distortion-product OAE [DPOAE] screening and 64 ears that failed). APT-based assessment paradigms for normal and abnormal ears were compared to the common absorbance normative range paradigm.
Results: Split-set analysis demonstrated a good reproducibility of APT, and test-retest of absorbance peak variables showed that they were stable measures for clinical assessment. Test performance of peak absorbance (AROC = 0.83; 95% CI [0.77, 0.88]) was comparable to the top-performing AAI variables (AROC = 0.85; 95% CI [0.80, 0.90]). APT-based assessment categorized measurements based on their peak absorbance and peak frequency and enhanced the detection of subtle frequency changes that were missed by the normative range method.
Conclusion: Analysis of absorbance peaks guided by APT has the potential to simplify and improve assessments of sound conduction pathways in newborn ears and can be used together with or in-place of current methods for analysis of wideband absorbance data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1044/2023_JSLHR-23-00122 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Mechanical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic.
The aim of this study was to investigate the potential of polymeric cell structures for the production of energy absorbers and to focus on the geometric optimization of polymeric cell structures producible by additive technologies to achieve the required deformation characteristics, high material efficiency and the low weight of the resulting absorber. A detailed analysis of different types of cell structures (different lattice structures and honeycombs) and their properties was performed. Honeycombs, which have been further examined in more detail, are best suited for absorbing large amounts of energy and high levels of material efficiency at known load directions.
View Article and Find Full Text PDFEur J Cancer
November 2024
David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
Purpose: MAK683, a first-in-class and highly selective allosteric inhibitor of the embryonic ectoderm development subunit of polycomb repressive complex 2, has shown sustained antitumor activity in tumor xenograft models. This first-in-human phase 1/2 study evaluated the safety, pharmacokinetics (PK), and clinical activity of single-agent MAK683 in advanced malignancies.
Methods: MAK683 was administered fasted once daily or twice daily continuously in 28-day treatment cycles.
Nanomaterials (Basel)
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
This paper investigates the thermal effects in fused-tapered passive optical fibers under near-infrared absorption. The thermal effect is primarily caused by impurities, such as OH-, which absorb incident light and generate heat. Using the finite element method, the volume changes during fiber tapering were simulated, influencing power density and thermal distribution.
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Department of Audiology and Prevention of Communication Disorders, All India Institute of Speech and Hearing, Mysuru, Karnataka, India.
Background: Although Cochlear implantation (CI) is effective in restoring hearing for children with severe-to-profound sensorineural hearing loss, it may influence the middle ear mechanics, potentially causing an air-bone gap and altering middle ear stiffness, which is not detected by traditional 226 Hz tympanometry.
Aims/objectives: To investigate the effect of mastoidectomy posterior tympanotomy (MPTA) on wideband absorbance (WBA) in children with CI.
Materials And Methods: The study included 20 normal-hearing children (normal group) and 10 children with CIs who underwent MPTA (CI-MPTA group), aged 3-10 years.
Food Chem
January 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
In this study, the effect of freeze-thaw (F-T) processes on the mechanical and water absorption performance of citrate cross-linked chitosan/poly(vinyl alcohol) hydrogel pads was evaluated. An excellent cross-linking of 4 % (w/w) citrate was indicated by enhanced peak strength in Fourier-transform infrared spectroscopy and X-ray diffraction patterns, which was applied to the subsequent F-T process. The results in the deswelling rate, water contact angle, and relaxation time of samples exhibited a tendency to decrease and then increase with increasing F-T cycles, reaching a minimum of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!