Comparison of patient setup accuracy for optical surface-guided and X-ray-guided imaging with respect to the impact on intracranial stereotactic radiotherapy.

Strahlenther Onkol

Department of Radiation Oncology, Klinikum Chemnitz gGmbH, Bürgerstraße 2, 09113, Chemnitz, Germany.

Published: January 2024

Purpose: The objective of this work is to estimate the patient positioning accuracy of a surface-guided radiation therapy (SGRT) system using an optical surface scanner compared to an X‑ray-based imaging system (IGRT) with respect to their impact on intracranial stereotactic radiotherapy (SRT) and intracranial stereotactic radiosurgery (SRS).

Methods: Patient positioning data, both acquired with SGRT and IGRT systems at the same linacs, serve as a basis for determination of positioning accuracy. A total of 35 patients with two different open face masks (578 datasets) were positioned using X‑ray stereoscopic imaging and the patient position inside the open face mask was recorded using SGRT. The measurement accuracy of the SGRT system (in a "standard" and an SRS mode with higher resolution) was evaluated using both IGRT and SGRT patient positioning datasets taking into account the measurement errors of the X‑ray system. Based on these clinically measured datasets, the positioning accuracy was estimated using Monte Carlo (MC) simulations. The relevant evaluation criterion, as standard of practice in cranial SRT, was the 95th percentile.

Results: The interfractional measurement displacement vector of the SGRT system, σ, in high resolution mode was estimated at 2.5 mm (68th percentile) and 5 mm (95th percentile). If the standard resolution was used, σ increased by about 20%. The standard deviation of the axis-related σ of the SGRT system ranged between 1.5 and 1.8 mm interfractionally and 0.5 and 1.0 mm intrafractionally. The magnitude of σ is mainly due to the principle of patient surface scanning and not due to technical limitations or vendor-specific issues in software or hardware. Based on the resulting σ, MC simulations served as a measure for the positioning accuracy for non-coplanar couch rotations. If an SGRT system is used as the only patient positioning device in non-coplanar fields, interfractional positioning errors of up to 6 mm and intrafractional errors of up to 5 mm cannot be ruled out. In contrast, MC simulations resulted in a positioning error of 1.6 mm (95th percentile) using the IGRT system. The cause of positioning errors in the SGRT system is mainly a change in the facial surface relative to a defined point in the brain.

Conclusion: In order to achieve the necessary geometric accuracy in cranial stereotactic radiotherapy, use of an X‑ray-based IGRT system, especially when treating with non-coplanar couch angles, is highly recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00066-023-02170-xDOI Listing

Publication Analysis

Top Keywords

sgrt system
24
patient positioning
16
positioning accuracy
16
intracranial stereotactic
12
stereotactic radiotherapy
12
system
10
positioning
9
sgrt
9
respect impact
8
impact intracranial
8

Similar Publications

Comparison between the SGRT and the conventional setup method for patients undergoing VMAT for pelvic malignancies.

Appl Radiat Isot

January 2025

Department of Medical Physics, Medical School, University of Crete, Heraklion, Greece. Electronic address:

Purpose: Surface Guided Radiation Treatment (SGRT) is a new method of positioning and monitoring patients on the linear accelerator's couch, using visual light cameras to monitor the skin's surface. The purpose of this study was to compare the SGRT with the conventional method, based on lasers and tattoos, in terms of accuracy and time expenditure, on patients with pelvic malignancies.

Materials And Methods: A group of 34 patients were enrolled in this study, 24 males who underwent radiotherapy prostate treatment and 10 females who underwent gynecological radiation therapy.

View Article and Find Full Text PDF

Linac-based stereotactic radiosurgery (SRS) with planning target volume (PTV) margins <1 mm has become increasingly common in recent years. Optical surface imaging for surface-guided radiation therapy (SGRT) is often used for intra-fraction motion monitoring during these treatments to facilitate the use of a smaller PTV margin by providing real-time quantitative patient positioning information. However, rotating the couch introduces errors to SGRT-reported translations and rotations that can be problematic for SRS treatments with non-coplanar arcs and very small PTV margins.

View Article and Find Full Text PDF

Use of surface tracking recordings to identify pitfalls during surface-guided radiotherapy.

Strahlenther Onkol

December 2024

Klinik für Strahlentherapie und Radioonkologie, Klinikum Stuttgart, Stuttgart, Germany.

Objective: The precise daily positioning of patients during radiation therapy determines the quality of the entire treatment. To avoid additional radiation exposure from regular cone-beam CT (CBCT) scans, surface-guided radiotherapy systems (SGRT) are increasingly used. The aim of this prospective clinical study was to evaluate the advantages, feasibility, and pitfalls of SGRT using the surface tracking recorder prototype of the camera component of ExacTrac Dynamic (Brainlab AG, Munich, Germany).

View Article and Find Full Text PDF

Evaluation of dynamic accuracy and latency of a surface-guided radiotherapy system.

Radiol Phys Technol

November 2024

Department of Radiation Oncology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan.

Article Synopsis
  • - The study evaluates the accuracy and latency of the surface-guided radiotherapy (SGRT) system using TrueBeam and AlignRT, comparing beam characteristics between gated and nongated beams with minimal differences observed (<0.1%).
  • - Dynamic accuracy was generally high, with deviations of less than 1 mm for 10-mm shifts, although ROI shape played a significant role in the results, showing a maximum displacement of 1.9 mm for a 30-mm shift.
  • - Latency times varied based on frame rates, with some rates possibly exceeding guideline limits, highlighting the need for careful use of SGRT systems in clinical settings.
View Article and Find Full Text PDF

Purpose: Radiotherapy devices with multiple image-guidance systems, such as surface-guided radiation therapy (SGRT), have been widely used in recent years. However, in the case of SGRT devices using the light-section method, coordinate coincidence evaluation using a phantom for SGRT devices with patterned light projection is not appropriate. Hence, this study aims to develop a dedicated phantom able to evaluate both the detection accuracy and coordinate coincidence of multiple IGRT configurations, including light-section-based SGRT devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!