Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since the inception of the G-quadruplex (G4), enormous attention has been devoted to designing small molecules which can stabilize the G-quadruplex. In contrast, the knowledge about the molecules and mechanisms involved in the destabilization of G4 is sparse, although it is well recognized that destabilization of G4 is important in neurobiology and age-related genetic issues. In this study, it has been shown that amphiphilic molecules having a long hydrocarbon chain can destabilize G4, regardless of its topology, using various biophysical and molecular dynamics simulation methods. It has been observed that the hydrophobic interaction induced by the long hydrocarbon chain of amphiphilic molecules is the main contributor in triggering the destabilization of G4, although hydrogen bonding by the polar part of the molecules also cooperates in the destabilization process. The experiment and simulation studies suggest that a long hydrocarbon chain containing amphiphilic molecules gets aggregated, and their hydrocarbon chain as well as the polar group intrude in the quartet region from the 5' side and interact with guanine bases as well as nearby loops through hydrophobic and electrostatic interactions, which trigger the destabilization of G4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.3c00585 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!