We report a mechanistic study of the interactions in the sorption of volatile organic sulfur compound (VOSC) diethyl sulfide (DES) by zinc porphyrin aluminum MOF (actAl-MOF-TCPPZn) compound 3. First, interactions were studied under dynamic conditions with the vapor of DES in flowing air, using time-dependent ATR-FTIR spectroscopy in a controlled atmosphere with a new facile spectroscopic mini-chamber. The first binding site includes (O-H) and COO groups as detected by characteristic peak shifts. Control experiments with a model compound, which lacks porosity and these groups, show no peak shifts. An additional insight was obtained by DFT computations using small clusters. The kinetics of sorption of DES by compound 3 is of the Langmuir adsorption model and pseudo-first order with rate constant = 0.442 ± 0.056 min. Sorption of DES under static conditions in saturated vapor results in stoichiometric adsorption complex [Al-MOF-TCPPZn](DES) characterized by spectroscopic, structural and gravimetric methods; the adsorbed amount is very high (381 mg g sorbent). The repetitive sorption and desorption of DES are conducted, with facile regeneration. Finally, the mechanistic details were determined by Raman and photoluminescence (PL) spectroscopy using a confocal Raman microscope. Photoexcitation of compound 3 at 405 nm into the Soret band of the metalloporphyrin linker shows the characteristic PL peaks of Q-bands: the purely electronic Q(0-0) and first vibronic Q(0-1) bands. Upon interaction with DES, preferential quenching of PL from the Q(0-0) band occurs with a significant increase of the signal of the vibronic Q(0-1) band, reflecting bonding to the metalloporphyrin ring. Compound 3 is of interest to mechanistic studies of VOSCs, their removal from air, and optical chemo-sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp03779g | DOI Listing |
Materials (Basel)
December 2024
Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA.
Metal-organic frameworks (MOFs) are hybrid inorganic-organic 3D coordination polymers with metal sites and organic linkers, which are a "hot" topic in the research of sorption, separations, catalysis, sensing, and environmental remediation. In this study, we explore the molecular mechanism and kinetics of interaction of the new copper porphyrin aluminum metal-organic framework (actAl-MOF-TCPPCu) compound with a vapor of the volatile organic sulfur compound (VOSC) diethyl sulfide (DES). First, compound was synthesized by post-synthetic modification (PSM) of Al-MOF-TCPPH compound by inserting Cu ions into the porphyrin ring and characterized by complementary qualitative and quantitative chemical, structural, and spectroscopic analysis.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo, SP, 05508-090, Brazil.
Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Inorganic Chemistry, Faculty of Science, Charles University Albertov 6, 128 00 Praha 2 Czech Republic
Boron-based frustrated Lewis pairs (FLPs) have become well-established catalysts for the hydrogenation of a wide range of functional groups. Conversely, aluminium-based FLP hydrogenation catalysts are less common, especially for CO reduction. They are mostly confined to the hydrogenation of imines, alkenes, and alkynes even though aluminium is much more abundant than boron and forms structurally related compounds.
View Article and Find Full Text PDFACS Nano
October 2024
Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea.
Artificial photosynthesis of hydrogen peroxide (HO) presents a promising environmentally friendly alternative to the industrial anthraquinone process. This work designed ultrathin metal-organic framework (MOF) nanosheets on which porphyrin ligand as an electron donor (D) and anthraquinone (AQ) as an electron acceptor (A) are integrated as the D-A complexes. The porphyrin component allows the MOF nanosheets to absorb full-spectrum solar light while the acceptor AQ motif promotes central aluminum ion coordination, hindering layer stacking to achieve a thickness of 1.
View Article and Find Full Text PDFAnticancer Res
October 2024
Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
Background/aim: Colorectal cancer (CRC) is one of the most widespread malignancies. One of the alternative therapeutic methods appears to be photodynamic therapy (PDT).
Materials And Methods: This study investigated the efficiency of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin zinc (ZnTPPS) and chloro-aluminum phthalocyanine disulfonate (ClAlPcS) with two commercial photosensitive compounds 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP) and tetramethylthionine chloride (methylene blue, MB) in PDT for CRC in vitro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!