Light-driven multicolor supramolecular systems mainly rely on the doping of dyes or a photo-reaction to produce unidirectional luminescence. Herein, we use visible light to drive the bidirectional reversible multicolor supramolecular shuttle from blue to green, white, yellow, up to orange by simple encapsulation of spiropyran-modified cyanostilbene (BCNMC) by the macrocyclic cucurbit[8]uril (CB[8]) monomer. The resultant host-guest complex displayed enhanced fluorescence properties, i.e. the multicolor fluorescence shuttle changed from blue to orange in the dark within 2 hours and reverted to the original state upon visible light irradiation for 30 s. Benefiting from the sensitivity of the spiropyran moiety to light, it can spontaneously isomerize from the ring-opened state to a ring-closed isomer in aqueous solution, and this photo-isomerization reaction is a reversible process under visible light irradiation, leading to the multicolor luminescence supramolecular shuttle as a result of intramolecular energy transfer. In addition, the light also drove the reversible conversion of the topological morphology of the host-guest complex from two-dimensional nanoplatelets to nanospheres. Different from the widely reported molecular rotaxane "shuttle", the spiropyran supramolecular shuttle confined in the macrocyclic host CB[8] not only modulated a reversible topological morphology by light but also exhibited multicolor luminescence, which was successfully applied in programmed and rewritable information encryption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202315749 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China.
Imperfections in metal halide perovskites, such as those induced by light exposure or thermal stress, compromise device performance and stability. A key challenge is immobilizing volatile iodine produced by iodide oxidation and regenerating impurities like elemental lead and iodine. Here, we address this by integrating a redox-active supramolecular assembly of nickel octaethylporphyrin into perovskite film, functioning as both an immobilizer and redox shuttle.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
Na-S and K-S batteries, with high-energy density, using naturally more abundant and affordable metals compared with rare resources like Li, Co, and Ni elements, have inspired intense research interest. However, the sulfur cathodes for Na/K storage are plagued by soluble polysulfide shuttling, larger volumetric deformation, and sluggish redox kinetics. Here, we report that a conductive organosulfur polymer microcage, fabricated facilely with the microbe and elemental sulfur as precursors, can effectively address these issues for stable high-capacity Na-S and K-S batteries.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Vanderbilt University Medical Center, Nashville, TN 37232, USA.
In recent decades, several discoveries have been made that force us to reconsider old ideas about mitochondria and energy metabolism in the light of these discoveries. In this review, we discuss metabolic interaction between various organs, the metabolic significance of the primary substrates and their metabolic pathways, namely aerobic glycolysis, lactate shuttling, and fatty acids β-oxidation. We rely on the new ideas about the supramolecular structure of the mitochondrial respiratory chain (respirasome), the necessity of supporting substrates for fatty acids β-oxidation, and the reverse electron transfer via succinate dehydrogenase during β-oxidation.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China.
During the reaction process in lithium-sulfur batteries, Lewis acidic lithium polysulfides (LiPSs) affect ion distribution and overall electrolyte stability, degrading battery performance and product distribution (e.g., LiS).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
Post-synthetic modification of mechanically interlocked molecules (MIMs) is an attractive avenue to add complexity to already intricate systems. This remains an important, challenging topic that is under-developed. In this paper, we report the synthesis and characterization of a [2]rotaxane molecule featuring a ring appended to an emissive cyclometalated Pt unit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!