A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tuning the electronic and optical properties of small organic acenedithiophene molecular crystals for photovoltaic applications: First principles calculations. | LitMetric

Periodic density functional theory was employed to investigate the impact of chemical modifications on the properties of π-conjugated acenedithiophene molecular crystals. Here, we highlight the importance of the β-methylthionation effect, the position of the sulfur atoms of the thiacycle group and their size, and the number of central benzene rings in the chemical modification strategy. Our results show that the introduction of the methylthio groups at the β-positions of the thiophene and the additional benzene ring at the center of the BDT crystal structure are a promising strategy to improve the performance of organic semiconductors, as observed experimentally. We found that β-MT-ADT exhibits large charge carrier mobility, which is in good agreement with the experimental results and comparable to that of rubrene. In addition, the electronic and optical properties of these ambipolar materials suggest promising performances with β-MT-ADT > ADT >β-MT-NDT > NDT > BEDT-BDT >β-MT-BDT > BDT. Moreover, functionalization with thiacycle-fused sulfur atoms of different sizes and numbers improve the properties of BDT but is still less efficient than the methylthionation effect. Overall, our findings suggest a promising molecular modification strategy for possibly high performance ambipolar organic semiconducting materials.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0171212DOI Listing

Publication Analysis

Top Keywords

electronic optical
8
optical properties
8
acenedithiophene molecular
8
molecular crystals
8
sulfur atoms
8
modification strategy
8
tuning electronic
4
properties
4
properties small
4
small organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!