Cadherins are type-I membrane glycoproteins that primarily participate in calcium-dependent cell adhesion and homotypic cell sorting in various stages of embryonic development. Besides their crucial role in cellular and physiological processes, increasing studies highlight their involvement in pathophysiological functions ranging from cancer progression and metastasis to being entry receptors for pathogens. Cadherins mediate these cellular processes through homophilic, as well as heterophilic interactions (within and outside the superfamily) by their membrane distal ectodomains. This review provides an in-depth structural perspective of molecular recognition among type-I and type-II classical cadherins. Furthermore, this review offers structural insights into different dimeric assemblies like the 'strand-swap dimer' and 'X-dimer' as well as mechanisms relating these dimer forms like 'two-step adhesion' and 'encounter complex'. Alongside providing structural details, this review connects structural studies to bond mechanics merging crystallographic and single-molecule force spectroscopic findings. Finally, the review discusses the recent discoveries on dimeric intermediates that uncover prospects of further research beyond two-step adhesion.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST20230356DOI Listing

Publication Analysis

Top Keywords

molecular recognition
8
classical cadherins
8
cell adhesion
8
structural
5
structural basis
4
basis molecular
4
recognition classical
4
cadherins
4
cadherins mediating
4
mediating cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!