Nonprecious transition-metal phosphides (TMPs) are versatile materials with tunable electronic and structural properties that could be promising as catalysts for energy conversion applications. Despite the facts, TMPs are not explored thoroughly to understand the chemistry behind their rich catalytic properties for the water splitting reaction. Herein, spiky ball-shaped monodispersed TMP nanoparticles composed of Fe, Co, and Ni are developed and used as efficient electrocatalysts for hydrogen and oxygen evolution reaction (HER, OER), and overall water splitting in alkaline medium; and their surface chemistry was explored to understand the reaction mechanism. The optimized FeCoNiP catalyst shows attractive activities of HER and OER with low overpotentials and Tafel slopes, and with high mass activities, turnover frequencies, and exchange current densities. When applied to overall water splitting, the electrolyzer FeCoNiP||FeCoNiP cell can reach a 10 mA cm current density at cell voltages of only 1.52 and 1.56 V in 1.0 M and 30 wt % KOH, respectively, much lower than those of commercial IrO||Pt/C. The optimized electrolyzer with sizable numbers of chemically active sites exhibits superior durability up to 70 h and 5000 cycles in 1.0 M KOH and can attain a current density as high as 1000 mA cm, showing a class of efficient bifunctional electrocatalysis. Experimental and density functional theory-based mechanistic analyses reveal that surface reconstruction takes place in the presence of KOH to form the TMP precatalyst, which results in high coverage of oxygen active species for the OER with a low apparent activation energy () for conversion of *OOH to O. These also evidenced the thermoneutral adsorption of H* for the efficient HER half-reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c11947 | DOI Listing |
Sci Rep
December 2024
School of Resources & Safety Engineering, Central South University, Changsha, 410083, Hunan, China.
To explore the mechanism of water inrush from the mine roof strata, a series of seepage-acoustic emission (SAE) experiments on red sandstone disc samples were carried out. The effects of the height to diameter ratio (H/D) and pore pressure on the mechanical, hydraulic and crack propagation properties of red sandstones were investigated. Test results show that, the peak load of rock samples declines with the decreasing H/D and increasing pore pressure.
View Article and Find Full Text PDFSci Rep
December 2024
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
The cultivation of common beans (Phaseolus vulgaris L.) in semi-arid regions is affected by drought. To explore potential alleviation strategies, we investigated the impact of inoculation with Bacillus velezensis, and the application of acetylsalicylic acid (ASA) via foliage application (FA), which promote plant growth and enhance stress tolerance.
View Article and Find Full Text PDFEnviron Int
December 2024
CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Carbon Neutral Innovation Research Center, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China. Electronic address:
Despite the emergence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARBs), how biological inter-trophic interactions, modulated by watershed urbanization, shape the resistome remains unexplored. We collected water samples from the highly urbanized (western: 65 % built land, sewage-affected) and lesser-urbanized (northern: 25 % built land, drinking water source) downstream tributaries of the Jiulong River in southeast China over dry and wet seasons. We utilized metagenomic and amplicon (16S and 18S rDNA) sequencing to investigate the relationships among microeukaryotic algae, consumer protists, bacterial communities, and the resistome.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
We observed bilayer phase transitions of dimyristoylphosphatidylcholine (DMPC) in aqueous solutions of four kinds of monosaccharides, namely, D-glucose, D-fructose, D-allose and D-psicose, using differential scanning calorimetry (DSC). D-allose (C3-epimer of D-glucose) and D-psicose (C3-epimer of D-fructose) are rare sugars. We performed DSC measurements using two types of sugar-containing sample dispersions of the DMPC vesicles: one is a normal sample dispersion with no concentration asymmetry between the inside and outside of the vesicles and the other is an unusual sample dispersion with a concentration asymmetry.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China.
Porous CuNi films are promising candidates for electrocatalytic water splitting, with their catalytic performance largely influenced by the crystallographic structure and chemical state. In this study, by employing a magnetic field-controlled bubble template-assisted electrodeposition method, CuNi films with a preferred Ni(111) crystal orientation were synthesized. Moreover, adjusting the magnetic field direction during deposition can affect the degree of preferred orientation and, consequently, the electrochemical activity of the films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!