Biodegradable films are extremely important for food packaging applications since they minimize environmental effects. However, their application areas are limited due to insufficient characteristics required for particular applications. The objective of the present research was to improve the properties of sago-based biodegradable films embedded with nano- and micro-ZnO (zinc oxide). Nano and micro-ZnO were incorporated in the films at different percentages (1%, 3%, and 5%) in that the films were formed using the solvent casting method. The physicochemical, barrier, thermal, optical, morphology, and mechanical properties of sago-based films were investigated. Adding 5% of micro- and nano-ZnO significantly improved film thickness (0.162 and 0.150 mm, respectively) and WVP (4.40 and 5.64 (kg/s)/(m.Pa), respectively) while the optical properties and thermal stability exhibited superior performance. Micro-ZnO particles improved the mechanical properties of sago-based biodegradable films with the tensile strength reaching 6.173 MPa. Moreover, sago-based nano-ZnO films showed excellent UV-shielding performance and relatively good visible-light transmittance. This study suggested that sago biodegradable film incorporated with micro-ZnO could be an excellent alternative to petroleum-based plastic packaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630799 | PMC |
http://dx.doi.org/10.1002/fsn3.3665 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
The potential of advanced energy storage devices lies in using solid biodegradable polymer electrolytes. This study is focused on a solid blend polymer electrolyte (SBPE) film based on chitosan (CS)-poly (vinyl alcohol) (PVA) blend matrix doped with magnesium chloride (MgCl) salt via solution casting. The interaction of MgCl was verified via X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFJ Food Sci
January 2025
Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.
Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan.
Recently, polyamides have been widely used in various fields due to their excellent durability, thermal stability, and other advantageous properties. However, polyamide products that end up in oceans have become a source of microplastics. For this reason, the development of highly degradable polyamides is greatly desired.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India. Electronic address:
Plant protein-based edible film and coatings have emerged as eco-friendly alternatives to synthetic packaging, offering biodegradable, non-toxic solutions. Their biocompatibility and film-forming properties make them suitable for direct application on food products, reducing reliance on non-degradable plastics and lowering environmental pollution. Despite their promising advantages, challenges remain in optimizing mechanical properties, production scalability, and consumer acceptance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada. Electronic address:
This study explores the effect of sucrose addition on the properties of chiral nematic cellulose nanocrystal (CNC) films for potential food industry applications, including biodegradable packaging and food coloring. The addition of sucrose altered the films' structural color, shifting from blue in pure CNC films to aqua blue, green, yellow-green, and red with increasing sucrose concentrations (up to 21 %). Surface analysis revealed a reduction in contact angle from 96° to 48° due to sucrose's hydrophilic nature and smoother film surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!