Ecofriendly Natural Surfactants in the Oil and Gas Industry: A Comprehensive Review.

ACS Omega

Department of Petroleum Engineering, Faculty of Engineering, Universitas Islam Riau, Khairuddin Nasution Street no. 113, Simpang Tiga, Pekanbaru 28284, Indonesia.

Published: November 2023

The use of different types of chemicals in upstream oilfield operations is critical for optimizing the different operations involved in hydrocarbon exploration and production. Surfactants are a type chemical that are applied in various upstream operations, such as drilling, fracturing, and enhanced oil recovery. However, due to their nonbiodegradability and toxicity, the use of synthetic surfactants has raised environmental concerns. Natural surfactants have emerged because of the hunt for sustainable and environmentally suitable substitutes. This Review discusses the role of natural surfactants in upstream operations as well as their benefits and drawbacks. The Review discusses the basic characteristics of surfactants, their classification, and the variables that affect their performance. Finally, the Review examines the possible applications of natural surfactants in the upstream oil sector and identifies areas that require further research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10633819PMC
http://dx.doi.org/10.1021/acsomega.3c04450DOI Listing

Publication Analysis

Top Keywords

natural surfactants
16
upstream operations
8
review discusses
8
surfactants upstream
8
surfactants
7
ecofriendly natural
4
surfactants oil
4
oil gas
4
gas industry
4
industry comprehensive
4

Similar Publications

Effect of catalase on CPC production during fermentation of Acremonium chrysogenum.

Bioresour Bioprocess

January 2025

Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.

Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer.

View Article and Find Full Text PDF

The rapid development of delivery systems for cosmetics has revealed two critical challenges in the field: enhancing the solubility of active ingredients and ensuring the stability of natural materials used in cosmetics. Nanoemulsion technology has emerged as an indispensable solution for addressing these challenges, not only enhancing the stability of cosmetics but also improving the solubility of pharmaceuticals and active ingredients with poor solubility. Nanoemulsion formulations have reinforced stability and amended the bioavailability of hydrophobic drugs.

View Article and Find Full Text PDF

This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.

View Article and Find Full Text PDF

To address the challenge of reusing foaming agents in foam drainage gas production processes, we developed a redox-responsive surfactant with a straightforward preparation method based on molecular electrostatic interaction assembly. The redox response mechanism of the surfactant was investigated through surface tension, absorbance, particle size, and Zeta potential analyses. Results indicate that the minimum surface tension in the oxidized state can reach 26.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the surface properties and electrical conductivity of betaine-based ionic liquids change when mixed with different concentrations of gabapentin at a specific temperature.
  • The findings show that as gabapentin concentration and the length of the alkyl chain increase, surface tension decreases, indicating stronger interactions.
  • Additionally, micellization parameters improve with longer chains, while conductivity decreases at higher gabapentin concentrations due to increased viscosity and ion interactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!