The covalent functionalization of graphene for enhancing their stability, improving their electrical or optical properties, or creating hybrid structures has continued to attract extensive attention; however, a fine control of nanoparticle (NP) size between graphene layers covalent-bridging chemistry has not yet been explored. Herein, precision covalent chemistry-assisted sandwiching of ultrasmall gold nanoparticles (US-AuNP) between graphene layers is described for the first time. Covalently interconnected graphene (CIG) nanoscaffolds with a preadjusted finely tuned graphene layer-layer distance facilitated the formation of sandwiched US-AuNPs (∼1.94 ± 0.20 nm, 422 AuNPs). The elemental composition analysis by X-ray photoelectron spectroscopy displayed an aniline group addition per ∼55 graphene carbon atoms. It provided information on covalent interconnection amidic linkages, while Raman spectroscopy offered evidence of covalent surface functionalization and the number of graphene layers (≤2-3 layers). High-resolution transmission electron microscopy images indicated a layer-layer distance of 2.04 nm, and low-angle X-ray diffraction peaks (2θ at 24.8 and 12.5°) supported a layer-layer distance increase compared to the characteristic (002) reflection (2θ at 26.5°). Combining covalent bridging with NP synthesis may provide precise control over the metal/metal oxide NP size and arrangement between 2D layered materials, unlocking new possibilities for advanced applications in energy storage, electrochemical shielding, and membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10633857PMC
http://dx.doi.org/10.1021/acsomega.3c04727DOI Listing

Publication Analysis

Top Keywords

graphene layers
12
layer-layer distance
12
precision covalent
8
graphene
8
covalent
5
covalent chemistry
4
chemistry fine-size
4
fine-size tuning
4
tuning sandwiched
4
sandwiched nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!