Three approaches to supervised learning for compositional data with pairwise logratios.

J Appl Stat

Department of Economics and Business and Barcelona School of Management, Universitat Pompeu Fabra, Barcelona, Spain.

Published: August 2022

Logratios between pairs of compositional parts (pairwise logratios) are the easiest to interpret in compositional data analysis, and include the well-known additive logratios as particular cases. When the number of parts is large (sometimes even larger than the number of cases), some form of logratio selection is needed. In this article, we present three alternative stepwise supervised learning methods to select the pairwise logratios that best explain a dependent variable in a generalized linear model, each geared for a specific problem. The first method features unrestricted search, where any pairwise logratio can be selected. This method has a complex interpretation if some pairs of parts in the logratios overlap, but it leads to the most accurate predictions. The second method restricts parts to occur only once, which makes the corresponding logratios intuitively interpretable. The third method uses additive logratios, so that -1 selected logratios involve a -part subcomposition. Our approach allows logratios or non-compositional covariates to be forced into the models based on theoretical knowledge, and various stopping criteria are available based on information measures or statistical significance with the Bonferroni correction. We present an application on a dataset from a study predicting Crohn's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637191PMC
http://dx.doi.org/10.1080/02664763.2022.2108007DOI Listing

Publication Analysis

Top Keywords

pairwise logratios
12
logratios
10
supervised learning
8
compositional data
8
additive logratios
8
three approaches
4
approaches supervised
4
learning compositional
4
pairwise
4
data pairwise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!