Bioderived materials have emerged as sustainable catalyst supports for several heterogeneous reactions owing to their naturally occurring hierarchal pore size distribution, high surface area, and thermal and chemical stability. We utilize sporopollenin exine capsules (SpECs), a carbon-rich byproduct of pollen grains, composed primarily of polymerized and cross-linked lipids, to synthesize carbon-encapsulated iron nanoparticles via evaporative precipitation and pyrolytic treatments. The composition and morphology of the macroparticles were influenced by the precursor iron acetate concentration. Most significantly, the formation of crystalline phases (FeC, α-Fe, and graphite) detected via X-ray diffraction spectroscopy showed a critical dependence on iron loading. Significantly, the characteristic morphology and structure of the SpECs were largely preserved after high-temperature pyrolysis. Analysis of Brunauer-Emmett-Teller surface area, the D and G bands from Raman spectroscopy, and the relative ratio of the C=C to C-C bonding from high-resolution X-ray photoelectron spectroscopy suggests that porosity, surface area, and degree of graphitization were easily tuned by varying the Fe loading. A mechanism for the formation of crystalline phases and meso-porosity during the pyrolysis process is also proposed. SpEC-Fe10% proved to be highly active and selective for the reverse water-gas shift reaction at high temperatures (>600 °C).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630965PMC
http://dx.doi.org/10.1021/acssuschemeng.3c00495DOI Listing

Publication Analysis

Top Keywords

surface area
12
sporopollenin exine
8
exine capsules
8
reverse water-gas
8
water-gas shift
8
shift reaction
8
formation crystalline
8
crystalline phases
8
synthesis graphene-encapsulated
4
graphene-encapsulated fec/fe
4

Similar Publications

An electrochemical aptasensor has been developed specifically for the sensitive and selective determination of ochratoxin A (OTA), one of the most important mycotoxins. The aptasensor utilizes a glassy carbon electrode that has been modified with toluidine blue (TB) encapsulated in a Zn-based metal-organic framework (TB@Zn-MOF). The results demonstrate that in the presence of OTA, the peak current of the differential pulse voltammogram (DPV) related to TB oxidation is notably decreased.

View Article and Find Full Text PDF

A novel electrochemiluminescence (ECL) biosensor was developed for the ultrasensitive detection of miRNA-155, based on the synergistic combination of multifunctional nanomaterials. The biosensor employed a conductive metal-organic framework (MOF), Ni(HAB) (HAB = hexaaminobenzene), as the substrate material. The unique π-electron conjugated structure of Ni(HAB) endowed the biosensor with excellent electron transport properties, significantly enhancing its sensitivity.

View Article and Find Full Text PDF

Background: A multivariate predictive model was constructed using baseline and 12-week clinical data to evaluate the rate of clearance of hepatitis B surface antigen (HBsAg) at the 48-week mark in patients diagnosed with chronic hepatitis B who are receiving treatment with pegylated interferon α (PEG-INFα).

Methods: The study cohort comprised CHB patients who received pegylated interferon treatment at Mengchao Hepatobiliary Hospital, Fujian Medical University, between January 2019 and April 2024. Predictor variables were identified (LASSO), followed by multivariate analysis and logistic regression analysis.

View Article and Find Full Text PDF

This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO-NP synthesis to overcome the disadvantages of traditional approaches. TiO-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate, using micro-computed tomography (microCT), the impact of various mechanized systems on the geometry of the root canal system (RCS) and dentin thickness in mandibular first molars. The hypothesis proposed that different systems would produce significant variations in RCS preparation.

Methods: Mesial and distal canals of mandibular molars were selected and divided into five groups (n=10) based on the system used: 2Shape (25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!