Detection and therapeutic implications of homologous recombination repair deficiency in pancreatic cancer: a narrative review.

J Gastrointest Oncol

Division of Medical Oncology, Department of Medicine, University of Miami, Miami, FL, USA.

Published: October 2023

Background And Objective: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. A major recent advance has been the identification of a subset of patients with PDAC who harbor inherited or somatic genetic alterations that result in homologous recombination deficiency (HRD) in tumor cells. These patients often respond favorably to drugs that can exploit this vulnerability. This review outlines the biomarkers that have been developed to predict HRD and their performance related specifically to PDAC, as well as novel HRD-targeted therapies for PDAC.

Methods: We conducted a narrative review of the HRD in PDAC based on PubMed, Google Scholar, website and citation searches.

Key Content And Findings: Germline mutations in and remains the only validated biomarker for the HRD state but various platforms are now available to define HRD beyond alterations. Currently, the available evidence supports the use of platinum-based chemotherapy as well as PARP inhibitors, and there is also emerging data that immune checkpoint inhibitors can produce some durable responses in these patients.

Conclusions: Consistently detecting clinically significant the HRD status in PDAC has remained challenging with current commercially available platforms. Multiple novel HRD-targeted therapies for PDAC are currently in development and clinical trials, offering new opportunities for these patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643583PMC
http://dx.doi.org/10.21037/jgo-23-85DOI Listing

Publication Analysis

Top Keywords

homologous recombination
8
narrative review
8
novel hrd-targeted
8
hrd-targeted therapies
8
pdac
6
hrd
6
detection therapeutic
4
therapeutic implications
4
implications homologous
4
recombination repair
4

Similar Publications

Background And Objective: Treatment landscape in advanced prostate cancer (PC) is evolving. There is limited understanding of the factors influencing decision-making for genetic/genomic testing and the barriers to recommending testing and treatment in international real-world clinical practice following the approval of poly-adenosine diphosphate-ribose polymerase inhibitors (PARPi) for metastatic castration-resistant PC (mCRPC). This work aims to assess genetic/genomic testing patterns and methods, including for homologous recombination repair mutation (HRRm), and treatment decisions among physicians caring for patients with PC across the USA, Europe, and Asia.

View Article and Find Full Text PDF

Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.

View Article and Find Full Text PDF

Dynamic molecular architecture of the synaptonemal complex.

Sci Adv

January 2025

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.

During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.

View Article and Find Full Text PDF

Optimizing genome editing efficiency in via a CRISPR/Cas9n-mediated editing system.

Appl Environ Microbiol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China.

is an important bioresource to produce various antibacterial natural products, however, the time-consuming and labor-intensive genome editing toolkits hindered the construction and application of engineered strains, and this study aimed to establish an efficient CRISPR/Cas9n genome editing system in . Initially, the CRISPR/Cas9-mediated editing tool was employed to replace those awkward genome editing tools that relied on homologous recombination, while the off-target Cas9 exhibited high toxicity to Sf01. Therefore, the nickase mutation D10A, high-fidelity mutations including N497A, R661A, Q695A, and Q926A, and thiostrepton-induced promotor P were incorporated into the Cas9 expression cassette, which reduced its toxicity.

View Article and Find Full Text PDF

Genomic analysis has played a significant role in the identification of driver mutations that are linked to disease progression and response to drug treatment in ovarian cancer. A prominent example is the stratification of epithelial ovarian cancer (EOC) patients with homologous recombination deficiency (HRD) characterized by mutations in DNA damage repair genes such as for treatment with PARP inhibitors. However, recent studies have shown that some epithelial ovarian tumors respond to PARP inhibitors irrespective of their HRD or mutation status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!