A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A deep learning-based model (DeepMPM) to help predict survival in patients with malignant pleural mesothelioma. | LitMetric

Background: Malignant pleural mesothelioma (MPM) is a rare disease with limited treatment and poor prognosis, and a precise and reliable means to predicting MPM remains lacking for clinical use.

Methods: In the population-based cohort study, we collected clinical characteristics from the Surveillance, Epidemiology, and End Results (SEER) database. According to the time of diagnosis, the SEER data were divided into 2 cohorts: the training cohort (from 2010 to 2016) and the test cohort (from 2017 to 2019). The training cohort was used to train a deep learning-based predictive model derived from DeepSurv theory, which was validated by both the training and the test cohorts. All clinical characteristics were included and analyzed using Cox proportional risk regression or Kaplan-Meier curve to determine the risk factors and protective factors of MPM.

Results: The survival model included 3,130 cases (2,208 in the training cohort and 922 in the test cohort). As for model's performance, the area under the receiver operating characteristics curve (AUC) was 0.7037 [95% confidence interval (CI): 0.7030-0.7045] in the training cohort and 0.7076 (95% CI: 0.7067-0.7086) in the test cohort. Older age; male sex, sarcomatoid mesothelioma; and T4, N2, and M1 stage tended to be the risk factors for survival. Meanwhile, epithelioid mesothelioma, surgery, radiotherapy, and chemotherapy tended to be the protective factors. The median overall survival (OS) of patients who underwent surgery combined with radiotherapy was the longest, followed by those who underwent a combination of surgery, radiotherapy, and chemotherapy.

Conclusions: Our deep learning-based model precisely could predict the survival of patients with MPM; moreover, multimode combination therapy might provide more meaningful survival benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643950PMC
http://dx.doi.org/10.21037/tcr-23-422DOI Listing

Publication Analysis

Top Keywords

training cohort
16
deep learning-based
12
survival patients
12
test cohort
12
learning-based model
8
predict survival
8
malignant pleural
8
pleural mesothelioma
8
cohort
8
clinical characteristics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!