Aggression in horses may cause serious accidents during riding and non-riding activities. Hence, predicting the temperament of horses is essential for selecting suitable horses and ensuring safety during the activity. In certain animals, such as hamsters, plasma melatonin concentrations have been correlated with aggressive behavior. However, whether this relationship applies to horses remains unclear. To address this research gap, this study aimed to evaluate differences in the plasma melatonin concentrations among horses of different breeds, ages, and sexes and examine the correlation between plasma melatonin concentrations and the temperament of the horses, including docility, affinity, dominance, and trainability. Blood samples from 32 horses were collected from the Horse Industry Complex Center of Jeonju Kijeon College. The docility, affinity, dominance, and trainability of the horses were assessed by three professional trainers who were well-acquainted with the horses. Plasma melatonin concentrations were measured using an enzyme-linked immunosorbent assay. The consequent values were compared between the horses of different breeds, ages, and sexes using a three-way analysis of variance and least significant difference post hoc test. Linear regression analysis was employed to identify the relationship between plasma melatonin concentrations and docility, affinity, dominance, and trainability. The results showed that the plasma melatonin concentrations significantly differed with breeds in Thoroughbred and cold-blooded horses. However, there were no differences in the plasma melatonin concentrations between the horse ages and sexes. Furthermore, plasma melatonin concentrations did not exhibit a significant correlation with the ranking of docility, affinity, dominance, and trainability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640934 | PMC |
http://dx.doi.org/10.5187/jast.2023.e12 | DOI Listing |
Animals (Basel)
January 2025
Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
Animals (Basel)
January 2025
Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute, University of Gabès, Médenine 4119, Tunisia.
Camels () are seasonal short-day breeders, regulated by photoperiod and melatonin secretion. However, no studies have explored melatonin levels in camel seminal plasma or their relationship with testosterone, age, or climatic factors, nor is it known whether melatonin receptors exist in camel spermatozoa to respond to seminal melatonin. This study aimed to analyze melatonin levels in camel seminal plasma and its specific receptors in spermatozoa.
View Article and Find Full Text PDFVet Res Commun
January 2025
Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, 183-8509, Fuchu, Tokyo, Japan.
This study investigated, for the first time, the alterations in the uterine echotexture and blood flow in cyclic and acyclic (inactive ovary) goats using ultrasonography. The study aimed also to evaluate the metabolomic changes in the plasma of cyclic and acyclic goats. Furthermore, the histopathological approach was applied to the specimens of the uterus to validate the findings of this study.
View Article and Find Full Text PDFPharmaceutics
November 2024
Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
This study aimed to develop a quantitative analytical method for the simultaneous determination of cannabidiol (CBD) and melatonin (MT) in mouse plasma using the protein precipitation method coupled with LC-MS/MS. Additionally, this study sought to investigate the impact of CBD on the pharmacokinetics of MT in mice using this method. Mouse plasma samples were precipitated with acetonitrile and analyzed using a Kromasil 100-5-C8 (2.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Laboratorio de Reproducción Animal, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54714, Mexico.
In mammals, the pineal hormone melatonin is the most powerful pacemaker of the master circadian clock and is responsible for reproduction in seasonal breeders. It is also well known that melatonin and its metabolites play antioxidant roles in many tissues, including reproductive cells. Melatonin synthesis and secretion from the pineal gland occurs during scotophase (the dark phase during a day-night cycle), while its inhibition is observed during photophase (period of light during a day-night cycle).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!