Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Several implant manufacturers have developed ultra-porous metal substrate acetabular components recently. Despite this, data on clinical and radiographic outcomes remain limited. Our study evaluated postoperative patient-reported outcome measures (PROMs) and radiographic analyses in patients fitted with a novel acetabular porous-coated component.
Methods: A total of 152 consecutive patients underwent a total hip arthroplasty by a single orthopaedic surgeon. All patients underwent surgery utilizing the same CT-scan based robotic-assisted device with the same porous cementless acetabular shell. They received standardized postoperative physical therapy, rehabilitation, and pain protocols. Preoperatively, first postoperative visit, 6-months, 1-year, and 2-years, patients were evaluated based on Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain, physical function, and total scores; 2) Patient-Reported Outcomes Measurement Information System (PROMIS)-10 physical and mental scores; 3) Hip Disability and Osteoarthritis Outcome Score (HOOS)-Jr scores; as well as 4) acetabular component positions and 5) evidence of acetabular component loosening.
Results: Significant improvements were observed by 6 months in WOMAC pain, physical function, and total scores (p < 0.05), maintained at 1 and 2 years. PROMIS-10 physical scores also improved significantly from preoperative to 6 months postoperative and remained so at 1 and 2 years postoperative (p < 0.05). No significant changes were found in PROMIS-10 mental scores. HOOS-Jr scores significantly improved from preoperative to 6 months postoperative and remained so through 2 years (p < 0.05). At 6 months, slight changes were noted in abduction angle and horizontal and vertical offset. Radiolucencies, initially found in 3 shells, reduced to 1 shell with 2 new radiolucencies by 6 months, and remained stable with no subsequent operative interventions. At 1 year and 2 years, no radiographic abnormalities were noted, including complete resolution of prior radiolucencies as well as stable components.
Conclusion: This porous cementless acetabular shell, implanted with CT-scan-based robotic-assisted techniques, demonstrated excellent postoperative PROMs at 2 years. Stable radiolucencies suggest good component stability. The early stable clinical and radiographic results suggest promising long-term outcomes with this device.
Level Of Evidence: III (retrospective cohort study).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643097 | PMC |
http://dx.doi.org/10.1016/j.jor.2023.10.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!