We explore the effects of the carbon molecular sieve (CMS) microstructure on the separation performance and transport mechanism of water-organic mixtures. Specifically, we utilize PIM-1 dense films and integrally skinned asymmetric hollow fiber membranes as polymer precursors for the CMS materials. The PIM-1 membranes were pyrolyzed under several different pyrolysis atmospheres (argon, carbon dioxide, and diluted hydrogen gas) and at multiple pyrolysis temperatures. Detailed gas physisorption measurements reveal that membranes pyrolyzed under 4% H and CO had broadened ultramicropore distributions (pore diameter <7 Å) compared to Ar pyrolysis, and pyrolysis under CO increased ultramicropore volume and broadened micropore distributions at increased pyrolysis temperatures. Gravimetric water and -xylene sorption and diffusion measurements reveal that the PIM-1-derived CMS materials are more hydrophilic than other CMS materials that have been previously studied, which leads to sorption-diffusion estimations showing water-selective permeation. Water permeation in the vapor phase, pervaporation, and liquid-phase hydraulic permeation reveal that the isobaric permeation modes (vapor permeation and pervaporation) are reasonably well predicted by the sorption-diffusion model, whereas the hydraulic permeation mode is significantly underpredicted (>250×). Conversely, the permeation of -xylene is well predicted by the sorption-diffusion model in all cases. The collection of pore size analysis, vapor sorption and diffusion, and permeation in different modalities creates a picture of a combined transport mechanism in which water-under high transmembrane pressures-permeates via a Poiseuille-style mechanism, whereas -xylene solutes in the mixture permeate via sorption-diffusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636745 | PMC |
http://dx.doi.org/10.1021/acs.iecr.3c02519 | DOI Listing |
Int J Biol Sci
January 2025
Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea.
Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, Brazil.
The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!