Background And Objectives: EUS is a crucial diagnostic and therapeutic method for many anatomical regions, especially in the evaluation of mediastinal diseases and related pathologies. Rapidly finding the standard stations is the key to achieving efficient and complete mediastinal EUS imaging. However, it requires substantial technical skills and extensive knowledge of mediastinal anatomy. We constructed a system, named EUS-MPS (EUS-mediastinal position system), for real-time mediastinal EUS station recognition.

Methods: The standard scanning of mediastinum EUS was divided into 7 stations. There were 33 010 images in mediastinum EUS examination collected to construct a station classification model. Then, we used 151 videos clips for video validation and used 1212 EUS images from 2 other hospitals for external validation. An independent data set containing 230 EUS images was applied for the man-machine contest. We conducted a crossover study to evaluate the effectiveness of this system in reducing the difficulty of mediastinal ultrasound image interpretation.

Results: For station classification, the model achieved an accuracy of 90.49% in image validation and 83.80% in video validation. At external validation, the models achieved 89.85% accuracy. In the man-machine contest, the model achieved an accuracy of 84.78%, which was comparable to that of expert (83.91%). The accuracy of the trainees' station recognition was significantly improved in the crossover study, with an increase of 13.26% (95% confidence interval, 11.04%-15.48%; < 0.05).

Conclusions: This deep learning-based system shows great performance in mediastinum station localization, having the potential to play an important role in shortening the learning curve and establishing standard mediastinal scanning in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631614PMC
http://dx.doi.org/10.1097/eus.0000000000000011DOI Listing

Publication Analysis

Top Keywords

deep learning-based
8
learning-based system
8
mediastinum station
8
station localization
8
eus
8
mediastinal eus
8
mediastinum eus
8
station classification
8
classification model
8
video validation
8

Similar Publications

Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning.

Comput Biol Med

January 2025

Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:

- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.

View Article and Find Full Text PDF

SEPO-FI: Deep-learning based software to calculate fusion index of muscle cells.

Comput Biol Med

January 2025

School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:

The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.

View Article and Find Full Text PDF

Predicting health-related outcomes can help with proactive healthcare planning and resource management. This is especially important on the older population, an age group growing in the coming decades. Considering longitudinal rather than cross-sectional information from primary care electronic health records (EHRs) can contribute to more informed predictions.

View Article and Find Full Text PDF

Magnetic resonance electrical properties tomography can extract the electrical properties of in-vivo tissue. To estimate tissue electrical properties, various reconstruction algorithms have been proposed. However, physics-based reconstructions are prone to various artifacts such as noise amplification and boundary artifact.

View Article and Find Full Text PDF

Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!