Furosine is often used both domestically and internationally as an indicator of the degree of heating to evaluate milk quality. However, in actual detection, the complexity of the milk matrix may lead to the inaccurate quantification of furosine in liquid milk. Therefore, in this study, an efficient and accurate method based on high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) was established to determine furosine in liquid milk. A 2.00 mL milk sample was hydrolyzed with 5 mL 12.00 mol/L hydrochloric acid solution and 1 mL water at 110 ℃ for 12 h. After hydrolysis, vortex-mixing and filtration were performed. The filtrate was diluted six times with 6.00 g/L ammonium acetate solution and then analyzed. Gradient elution was performed with 0.20% formic acid aqueous solution and acetonitrile solution as mobile phases, followed by chromatographic separation on an AQ-C column (150 mm×3.5 mm, 5 μm). The data were collected by Q-TOF/MS with an electrospray ionization source operated in positive-ion mode. The accuracy of the quantification of furosine in milk was assessed by investigating the effects of the hydrochloric acid concentration (0.30, 1.25, and 3.00 mol/L) in the furosine solution on the MS response. The results showed that high hydrochloric acid concentrations inhibited the response signals. A good linear relationship was obtained in the mass concentration range of 0.05-2.00 mg/L, with a correlation coefficient () of 0.994. The limit of detection of the method was 0.50 mg/100 g, which meets the requirements of actual sample detection. The average recoveries of furosine ranged from 79.9% to 119.7% at three spiked levels of 1.52, 3.03, and 15.17 mg/100 g, with relative standard deviations of 1.4%-2.6%. The method was applied to detect 303 samples from 101 batches of pasteurized milk sold in the market, and the contents of furosine in these samples ranged from 5.1 to 11.9 mg/100 g. The proposed method is characterized with high efficiency, recovery, sensitivity, and accuracy. Thus, it can be used for the determination of large quantities of samples and provides technical support for the continuous promotion of the high-quality development of the whole dairy industry chain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654872PMC
http://dx.doi.org/10.3724/SP.J.1123.2023.05009DOI Listing

Publication Analysis

Top Keywords

furosine liquid
12
liquid milk
12
hydrochloric acid
12
milk
8
high performance
8
performance liquid
8
liquid chromatography-quadrupole
8
chromatography-quadrupole time-of-flight
8
time-of-flight mass
8
quantification furosine
8

Similar Publications

Investigation of Maillard reaction products in plant-based milk alternatives.

Food Res Int

December 2024

Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Over the past decade, plant-based milk alternatives (PBMAs) have gained increasing popularity. Several processing technologies, including heat treatment, are usually employed during their production in order to replicate the properties of cow's milk. These processes can trigger the Maillard reaction, producing Maillard reaction products (MRPs) and amino acid cross-links, which may alter the nutritional profile and digestibility of PBMAs.

View Article and Find Full Text PDF
Article Synopsis
  • - Glycation is a process where proteins undergo a modification linked to conditions like diabetes, with specific products like glycated hemoglobin (HbA1c) being crucial for diabetes management and advanced glycation end-products (AGEs) associated with complications.
  • - The study explores the use of fingernail clippings as a practical and non-invasive method to measure glycation levels over several months, utilizing liquid chromatography-mass spectrometry to quantify relevant biomarkers like furosine and AGEs.
  • - Results show a moderate correlation between fingernail furosine levels and HbA1c, suggesting that fingernails can effectively reflect glycation levels similarly to blood tests, supporting their potential use in monitoring diabetes.
View Article and Find Full Text PDF

This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging.

View Article and Find Full Text PDF

Furosine is often used both domestically and internationally as an indicator of the degree of heating to evaluate milk quality. However, in actual detection, the complexity of the milk matrix may lead to the inaccurate quantification of furosine in liquid milk. Therefore, in this study, an efficient and accurate method based on high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) was established to determine furosine in liquid milk.

View Article and Find Full Text PDF

In order to improve the safety and quality of lactose-free milk (LFM) Maillard reaction products (MRPs), this study used raw cow's milk as raw material and lactase hydrolysis to prepare LFM, which was heat-treated using pasteurization and then placed in storage temperatures of 4 °C, 25 °C and 37 °C to investigate the changes in the Maillard reaction (MR). The results of the orthogonal test showed that the optimal conditions for the hydrolysis of LFM are as follows: the hydrolysis temperature was 38 °C, the addition of lactase was 0.03%, and the hydrolysis time was 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!