Furosine is often used both domestically and internationally as an indicator of the degree of heating to evaluate milk quality. However, in actual detection, the complexity of the milk matrix may lead to the inaccurate quantification of furosine in liquid milk. Therefore, in this study, an efficient and accurate method based on high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) was established to determine furosine in liquid milk. A 2.00 mL milk sample was hydrolyzed with 5 mL 12.00 mol/L hydrochloric acid solution and 1 mL water at 110 ℃ for 12 h. After hydrolysis, vortex-mixing and filtration were performed. The filtrate was diluted six times with 6.00 g/L ammonium acetate solution and then analyzed. Gradient elution was performed with 0.20% formic acid aqueous solution and acetonitrile solution as mobile phases, followed by chromatographic separation on an AQ-C column (150 mm×3.5 mm, 5 μm). The data were collected by Q-TOF/MS with an electrospray ionization source operated in positive-ion mode. The accuracy of the quantification of furosine in milk was assessed by investigating the effects of the hydrochloric acid concentration (0.30, 1.25, and 3.00 mol/L) in the furosine solution on the MS response. The results showed that high hydrochloric acid concentrations inhibited the response signals. A good linear relationship was obtained in the mass concentration range of 0.05-2.00 mg/L, with a correlation coefficient () of 0.994. The limit of detection of the method was 0.50 mg/100 g, which meets the requirements of actual sample detection. The average recoveries of furosine ranged from 79.9% to 119.7% at three spiked levels of 1.52, 3.03, and 15.17 mg/100 g, with relative standard deviations of 1.4%-2.6%. The method was applied to detect 303 samples from 101 batches of pasteurized milk sold in the market, and the contents of furosine in these samples ranged from 5.1 to 11.9 mg/100 g. The proposed method is characterized with high efficiency, recovery, sensitivity, and accuracy. Thus, it can be used for the determination of large quantities of samples and provides technical support for the continuous promotion of the high-quality development of the whole dairy industry chain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654872 | PMC |
http://dx.doi.org/10.3724/SP.J.1123.2023.05009 | DOI Listing |
Food Res Int
December 2024
Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Over the past decade, plant-based milk alternatives (PBMAs) have gained increasing popularity. Several processing technologies, including heat treatment, are usually employed during their production in order to replicate the properties of cow's milk. These processes can trigger the Maillard reaction, producing Maillard reaction products (MRPs) and amino acid cross-links, which may alter the nutritional profile and digestibility of PBMAs.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE, F-59000 Lille, France. Electronic address:
Bone
October 2024
Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland. Electronic address:
This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging.
View Article and Find Full Text PDFSe Pu
November 2023
Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
Furosine is often used both domestically and internationally as an indicator of the degree of heating to evaluate milk quality. However, in actual detection, the complexity of the milk matrix may lead to the inaccurate quantification of furosine in liquid milk. Therefore, in this study, an efficient and accurate method based on high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) was established to determine furosine in liquid milk.
View Article and Find Full Text PDFMolecules
October 2023
School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
In order to improve the safety and quality of lactose-free milk (LFM) Maillard reaction products (MRPs), this study used raw cow's milk as raw material and lactase hydrolysis to prepare LFM, which was heat-treated using pasteurization and then placed in storage temperatures of 4 °C, 25 °C and 37 °C to investigate the changes in the Maillard reaction (MR). The results of the orthogonal test showed that the optimal conditions for the hydrolysis of LFM are as follows: the hydrolysis temperature was 38 °C, the addition of lactase was 0.03%, and the hydrolysis time was 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!