Background: Seed aging is a critical factor contributing to vigor loss, leading to delayed forage seed germination and seedling growth. Numerous studies have revealed the regulatory role of WRKY transcription factors in seed development, germination, and seed vigor. However, a comprehensive genome-wide analysis of WRKY genes in Zhongmu No.1 alfalfa has not yet been conducted.

Results: In this study, a total of 91 MsWRKY genes were identified from the genome of alfalfa. Phylogenetic analysis revealed that these MsWRKY genes could be categorized into seven distinct subgroups. Furthermore, 88 MsWRKY genes were unevenly mapped on eight chromosomes in alfalfa. Gene duplication analysis revealed segmental duplication as the principal driving force for the expansion of this gene family during the course of evolution. Expression analysis of the 91 MsWRKY genes across various tissues and during seed germination exhibited differential expression patterns. Subsequent RT-qPCR analysis highlighted significant induction of nine selected MsWRKY genes in response to seed aging treatment, suggesting their potential roles in regulating seed vigor.

Conclusion: This study investigated WRKY genes in alfalfa and identified nine candidate WRKY transcription factors involved in the regulation of seed vigor. While this finding provides valuable insights into understanding the molecular mechanisms underlying vigor loss and developing new strategies to enhance alfalfa seed germinability, further research is required to comprehensively elucidate the precise pathways through which the MsWRKY genes modulate seed vigor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652462PMC
http://dx.doi.org/10.1186/s12870-023-04597-xDOI Listing

Publication Analysis

Top Keywords

mswrky genes
24
seed vigor
16
wrky genes
12
seed
11
genes
9
genes alfalfa
8
seed aging
8
vigor loss
8
seed germination
8
wrky transcription
8

Similar Publications

Miscanthus is an emerging sustainable bioenergy crop whose growing environment is subject to many abiotic and biological stresses. WRKY transcription factors play an important role in stress response and growth of biotic and abiotic. To clarify the distribution and expression of the WRKY genes in Miscanthus, it is necessary to classify and phylogenetically analyze the WRKY genes in Miscanthus.

View Article and Find Full Text PDF

Background: Seed aging is a critical factor contributing to vigor loss, leading to delayed forage seed germination and seedling growth. Numerous studies have revealed the regulatory role of WRKY transcription factors in seed development, germination, and seed vigor. However, a comprehensive genome-wide analysis of WRKY genes in Zhongmu No.

View Article and Find Full Text PDF

WRKY Transcription Factors in L.: Genome-Wide Identification and Expression Analysis Under Abiotic Stress.

DNA Cell Biol

November 2020

State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.

Alfalfa ( L.) is the most widely cultivated leguminous herb in the world. Its agricultural development has been restricted by various adverse environmental conditions, including water deficiency, high salinity, and low temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!