Objective: Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with poor prognosis due to high postoperative recurrence rates. The aim of this study is to develop a contrast CT radiomic feature-based prognosis prediction model for ACC and evaluate its performance by comparison with ENSAT staging system and S-GRAS score.

Methods: Included in this study were 39 ACC patients, from which we extracted 1411 radiomic features. Using cross-validated least absolute shrinkage and selection operator regression (cv-LASSO regression), we generated a radiomic index. Additionally, we further validated the radiomic index using both univariate and multivariate Cox regression analyses. We constructed a radiomic nomogram that incorporated the radiomic signature and compared it with ENSAT stage and S-GRAS score in terms of calibration, discrimination and clinical usefulnes.

Results: In this study, the average progression free survival (PFS) of 39 patients was 20.4 (IQR 9.1-60.1) months and the average overall survival (OS) was 57.8 (IQR 32.4-NA). The generated radiomic features were significantly associated with PFS, OS, independent of clinical-pathologic risk factors (HR 0.16, 95%CI 0.02-0.99, p = 0.05; HR 0.20, 95%CI 0.04-1.07, p = 0.06, respectively). The radiomic index, ENSAT stage, resection status, and Ki67% index incorporated nomogram exhibited better performance for both PFS and OS prediction as compared with the S-GRAS and ENSAT nomogram (C-index: 0.75 vs. C-index: 0.68, p = 0.030 and 0.67, p = 0.025; C-index: 0.78 vs. C-index: 0.72, p = 0.003 and 0.73, p = 0.006). Calibration curve analysis showed that the radiomics-based model performs best in predicting the two-year PFS and the three-year OS. Decision curve analysis demonstrated that the radiomic index nomogram outperformed the S-GRAS and ENSAT nomogram in predicting the two-year PFS and the three-year OS.

Conclusion: The contrast CT radiomic-based nomogram performed better than S-GRAS or ENSAT in predicting PFS and OS in ACC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-023-03568-4DOI Listing

Publication Analysis

Top Keywords

radiomic features
12
s-gras ensat
12
radiomic
9
contrast radiomic
8
acc patients
8
generated radiomic
8
radiomic nomogram
8
ensat stage
8
ensat nomogram
8
curve analysis
8

Similar Publications

Purpose: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individualized models through automatic machine learning (autoML) to predict the efficacy of immunotherapy in patients with inoperable advanced NSCLC.

Methods: A total of 63 eligible participants were included and randomized into training and validation groups.

View Article and Find Full Text PDF

Radiomic signatures of brain metastases on MRI: utility in predicting pathological subtypes of lung cancer.

Transl Cancer Res

December 2024

Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.

Background: The pathological sub-classification of lung cancer is crucial in diagnosis, treatment and prognosis for patients. Quick and timely identification of pathological subtypes from imaging examinations rather than histological tests could help guiding therapeutic strategies. The aim of the study is to construct a non-invasive radiomics-based model for predicting the subtypes of lung cancer on brain metastases (BMs) from multiple magnetic resonance imaging (MRI) sequences.

View Article and Find Full Text PDF

Background: The rising incidence of parotid gland tumors, with a focus on pleomorphic adenomas (PMA) and Warthin tumors (WT), necessitates accurate preoperative distinction due to their treatment variability and PMA's malignant potential. Traditional imaging, while valuable, has limited accuracy. This study employs multi-slice computed tomography (MSCT) radiomics coupled with serum alpha-L-fucosidase (AFU) levels to develop a diagnostic model aimed at elevating clinical discernment and precision therapy delivery.

View Article and Find Full Text PDF

Background A minority of patients receiving stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC) are not good responders. Radiomic features can be used to generate predictive algorithms and biomarkers that can determine treatment outcomes and stratify patients to their therapeutic options. This study investigated and attempted to validate the radiomic and clinical features obtained from early-stage and oligometastatic NSCLC patients who underwent SBRT, to predict local response.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is characterized by high postoperative recurrence rates, and predicting early recurrence is crucial for improving clinical outcomes, yet remains challenging. Both preoperative computed tomography (CT) imaging radiomic features and serum biomarkers related to microvascular infiltration are important indicators of HCC prognosis. This study aimed to develop a nomogram model incorporating both preoperative CT radiomic features and serum biomarkers associated with microvascular infiltration to predict early postoperative recurrence in HCC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!