Urea is recognized as one of the most frequently used adulterants in milk to enhance artificial protein content, and whiteness. Drinking milk having high urea concentrations which causes innumerable health disputes like ulcers, indigestion, and kidney-related problems. Therefore, herein, a simple and rapid electroanalytical platform was developed to detect the presence of urea in milk using a modified electrode sensor. Calcium oxide nanoparticles (CaO NPs) were green synthesized and used as a catalyst material for developing the sensor. Synthesized materials formation was confirmed by different techniques like FTIR, UV-visible, XRD, SEM-EDX, and Raman spectroscopy. The carbon paste electrode (CPE) was modified using the CaO NPs and used as a working electrode during the analysis followed by cyclic voltammetry and differential pulse voltammetry (DPV) techniques. The fabricated calcium oxide modified carbon paste electrode (CaO/CPE) successfully detected the presence of urea in the lower concentration range (lower limit of detection (LLOD) = 0.032 µM) having a wide linear detection range of 10-150 µM. Adsorption-controlled electrode process was achieved at the scan rate variation parameter. The leading parameters like the selectivity, repeatability, and stability of the CaO/CPE were investigated. The relative standard deviation of sensor was ± 3.8% during the interference and stability study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651922PMC
http://dx.doi.org/10.1038/s41598-023-46728-2DOI Listing

Publication Analysis

Top Keywords

presence urea
8
calcium oxide
8
cao nps
8
carbon paste
8
paste electrode
8
urea
5
electrode
5
green sustainable
4
sustainable synthesis
4
synthesis cao
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!