In an increasingly chemically polluted environment, rapidly characterizing the human chemical exposome (i.e., chemical mixtures accumulating in humans) at the population scale is critical to understand its impact on health. High-resolution mass spectrometry (HRMS) profiling of complex biological matrices can theoretically provide a comprehensive picture of chemical exposures. However, annotating the detected chemical features, particularly low-abundant ones, remains a significant obstacle to implementing such approaches at a large scale. We present Scannotation (https://github.com/scannotation/Scannotation_software), an automated and user-friendly suspect screening tool for the rapid pre-annotation of HRMS preprocessed data sets. This software tool combines several MS1 chemical predictors, i.e., /, experimental and predicted retention times, isotopic patterns, and neutral loss patterns, to score the proximity between features and suspects, thus efficiently prioritizing tentative annotations to verify. Scannotation and MS-DIAL4 were used to annotate blood serum samples of 75 Breton adolescents. Scannotation's combination of MS1-based chemical predictors allowed us to annotate 89 chemically diverse environmental compounds with high confidence (confirmed by MS2 when available). These compounds included 62% of emerging molecules, for which no toxicological or human biomonitoring data are reported in the literature. The complementarity observed with MS-DIAL4 results demonstrates the relevance of Scannotation for the efficient pre-annotation of large-scale exposomics data sets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.3c04764 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!