Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To advance scientific understanding of disease processes and related intervention effects, study results should be free from bias and replicable. More broadly, investigators seek results that are transportable, that is, applicable to a perceived study population as well as in other environments and populations. We review fundamental statistical issues that arise in the analysis of observational data from disease cohorts and other sources and discuss how these issues affect the transportability and replicability of research results. Much of the literature focuses on estimating average exposure or intervention effects at the population level, but we argue for more nuanced analyses of conditional effects that reflect the complexity of disease processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3899/jrheum.2023-0499 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!