Introduction: Natural hair curvature and colour are genetically determined human traits, that we intentionally change by applying thermal and chemical treatments to the fibre. Presently, those cosmetic methodologies act externally and their recurrent use is quite detrimental to hair fibre quality and even to our health.
Objectives: This work represents a disruptive concept to modify natural hair colour and curvature. We aim to model the fibre phenotype as it is actively produced in the follicle through the topical delivery of specific bioactive molecules to the scalp.
Methods: Transcriptome differences between curly and straight hairs were identified by microarray. In scalp samples, the most variable transcripts were mapped by in situ hybridization. Then, by using appropriate cellular models, we screened a chemical library of 1200 generic drugs, searching for molecules that could lead to changes in either fibre colour or curvature. A pilot-scale, single-centre, investigator-initiated, prospective, blind, bilateral (split-scalp) placebo-controlled clinical study with the intervention of cosmetics was conducted to obtain a proof of concept (RNEC n.92938).
Results: We found 85 genes transcribed significantly different between curly and straight hair, not previously associated with this human trait. Next, we mapped some of the most variable genes to the inner root sheath of follicles, reinforcing the role of this cell layer in fibre shape moulding. From the drug library screening, we selected 3 and 4 hits as modulators of melanin synthesis and gene transcription, respectively, to be further tested in 33 volunteers. The intentional specific hair change occurred: 8 of 14 volunteers exhibited colour changes, and 16 of 19 volunteers presented curvature modifications, by the end of the study.
Conclusion: The promising results obtained are the first step towards future cosmetics, complementary or alternative to current methodologies, taking hair styling to a new level: changing hair from the inside out.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464751 | PMC |
http://dx.doi.org/10.1016/j.jare.2023.11.013 | DOI Listing |
Head Neck
January 2025
Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Introduction: Salivary gland malignancies are heterogeneous tumors with highly variable outcomes. Elective neck management options include observation, neck dissection (ND), and neck irradiation (NI). We sought to compare outcomes of cN0 salivary gland cancer by elective neck management.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Key Laboratory of Animal Biotechnology of Xinjiang, Ministry of Agriculture(MOA), Urumqi, 830026, Xinjiang, China.
CRISPR/Cas9 technology has been widely utilized to enhance productive performance, increase disease resistance and generate medical models in livestock. The FecB allele in sheep is a mutation in the BMPRIB gene, recognized as the first major gene responsible for the high fecundity trait in sheep, leading to an increased ovulation rate in ewe. In this study, we employed CRISPR/Cas9-mediated homologous-directed repair (HDR) to introduce a defined point mutation (c.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Nature uses fibrous structures for sensing and structural functions as observed in hairs, whiskers, stereocilia, spider silks, and hagfish slime thread skeins. Here, we demonstrate multi-nozzle printing of 3D hair arrays having freeform trajectories at a very high rate, with fiber diameters as fine as 1.5 µm, continuous lengths reaching tens of centimeters, and a wide range of materials with elastic moduli from 5 MPa to 3500 MPa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!