Achieving global food security and ensuring sustainable agriculture, the dual objectives of the second Sustainable Development Goal (SDG 2), necessitate immediate and collaborative efforts from developing and developed nations. The adverse effects of ozone on crop yields have the potential to significantly undermine the United Nations' ambitious target of attaining food security and ending hunger by 2030. This review examines the causes of growing tropospheric ozone, especially in India and China which lead to a substantial reduction in crop yield and forest biomass. The findings show that a nexus of high population, rapid urbanization and regional pollution sources aggravates the problem in these countries. It elucidates that when plants are exposed to ozone, specific cellular pathways are triggered, resulting in changes in the expression of genes related to hormone production, antioxidant metabolism, respiration, and photosynthesis. Assessing the risks associated with ozone exposure involves using response functions that link exposure-based and flux-based measurements to variables like crop yield. Precisely quantifying the losses in yield and economic value in food crops due to current ozone levels is of utmost importance in comprehending the risks ozone poses to global food security. We conclude that policymakers should focus on implementing measures to decrease the emissions of ozone precursors, such as enhancing vehicle fuel efficiency standards and promoting the use of cleaner energy sources. Additionally, efforts should be directed toward mapping or developing crop varieties that can tolerate ozone, applying protective measures at critical stages of plant growth and establishing ozone-related vegetation protection standards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140693 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.
View Article and Find Full Text PDFJ Adolesc Health
February 2025
Division of Adolescent Health, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada.
Front Parasitol
August 2024
Veterinary Health Innovation Engine, University of Surrey, Guildford, United Kingdom.
species are parasitic organisms of vertebrates with a worldwide distribution. They have an important impact globally upon human and animal health, and livestock productivity. The life cycle of these species is complex and difficult to disrupt to improve human health, animal health, food security and economic growth.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.
Accurate and efficient determination of malachite green (MG) in aquaculture is crucial for ensuring environment and food safety. Herein, we present a dual-response fluorescence probe based on an Ag/PMMA/Eu nanocomposite for the sensitive detection of MG with low concentration and single droplet. The luminescence properties of the Ag/PMMA/Eu nanocomposite and the fluorescence resonance energy transfer (FRET) effect between Eu and MG are significantly improved due to the localized surface plasmon resonance (LSPR) effect.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China.
As sessile organisms, plants must directly face various stressors. Therefore, plants have evolved a powerful stress resistance system and can adjust their growth and development strategies appropriately in different stressful environments to adapt to complex and ever-changing conditions. Nevertheless, prioritizing defensive responses can hinder growth; this is a crucial factor for plant survival but is detrimental to crop production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!