Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, to remove harmful cyanobacterial species Microcystis aeruginosa from aqueous phases, adsorption-based strategy was utilized. For this strategy, the surface of cotton fiber was modified using chitosan molecules to develop a highly efficient and ecofriendly adsorbent in removal of Microcystis aeruginosa from aqueous solution. The pristine cotton fiber could not remove M. aeruginosa, while the chitosan-modified cotton (CS-m-Cotton) showed the 95% of cell removal efficiency within 12 h. The surface characteristics of chitosan-modified cotton compared to the pristine cotton fiber was examined by various surface analysis methods. In addition, the pre-treatment of pristine cotton using sodium hydroxide solution was an important factor for enhancement of chitosan modification efficiency on the cotton fiber. The developed chitosan-modified cotton fiber could be reusable for M. aeruginosa cell removal after the simple desorption treatment using ultrasonication in alkaline solution. During the repeated adsorbent regeneration and reuse, the chitosan-modified cotton maintained its M. aeruginosa removal efficiencies (>90%). From the acute toxicity assessment using the chitosan-modified cotton and, the measurements of chemical oxygen demand and microcystin level changes in the M. aeruginosa treatment process using the adsorbent, the environmental safety of the adsorption strategy using the developed adsorbent could be confirmed. Based on our results, the chitosan-modified cotton fiber could be proposed as an efficient and ecofriendly solution for remediation of harmful cyanobacterial species occurring water resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140679 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!