The accumulation of soil organic carbon (SOC) is crucial for the development and ecosystem function restoration of reclaimed mine soils (RMSs). To optimize reclamation management practices, this study aims to explore the factors and underlying mechanisms influencing the recovery of SOC and its components in RMSs from a systemic perspective using complex network theory (CNT). This study focused on coal mining subsidence areas in the eastern mining regions of China, comparing reclaimed cultivated land with surrounding non-subsided cultivated land. Soil samples were collected at depths of 0-20 cm, 20-40 cm, and 40-60 cm, and 25 soil indicators were measured. CNT was applied to explore the intricate relationships between soil indicators and to identify the key factors and underlying mechanisms influencing SOC and its components in RMSs. The results revealed that the compaction-induced soil structural damage during the reclamation process led to a chain reaction, resulting in increased soil bulk density (11.92 % to 15.03 %), finer soil particles (5.00 % to 9.88 % more clay and silt), and enhanced SOC mineralization (SOC decreased by 10.70 % to 15.62 % with a lower C/N ratio by 2.30 % to 28.55 %). Microbial activity also decreased, with a 6.25 % to 13.16 % drop in MBC and a 0.91 % to 27.68 % decrease in enzyme activity. The utilization of active SOC fractions by more adaptable bacterial communities was crucial within this chain reaction process. The intermediate role of soil structure in the RMS ecosystem, particularly in carbon cycling, becomes more prominent. RMSs exhibited heightened sensitivity to soil structure changes, with the response of microorganisms and enzymes to soil structure changes being pivotal. In the carbon cycling process of RMSs, microbial-driven enzyme activity in response to soil structure was more critical during SOC transformation, while the role of physical-chemical protection and microbial inhibition mediated by iron‑aluminum oxides became more pronounced in stabilizing SOC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168523 | DOI Listing |
Biol Trace Elem Res
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geotechnical Engineering, School of Civil Engineering, Tongji University, Shanghai, 200000, China.
This study investigates the vulnerability of expansive soil slopes to destabilization and damage, particularly under intense rainfall, due to their heightened sensitivity to moisture. Focusing on a project in Yunnan Province, numerical simulation software is employed to address slope stability challenges. Meanwhile, the soil mechanical parameters of this study were acquired through experimentation.
View Article and Find Full Text PDFSci Data
January 2025
ETH Zürich, Institut für Umweltingenieurwissenschaften, Zürich, Switzerland.
Mangrove forests thrive along global tropical coasts, acting as a barrier that protects coastlines against storm surges and as nurseries for an entire food web. They are also known for their high carbon sequestration rates and soil carbon stocks. We introduce a new global mangrove canopy height map generated from TanDEM-X spaceborne elevation measurements collected during the 2011-2013 period with a 12-meter spatial resolution and an accuracy of 2.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Molecular Biology Department, Biotechnology Research Institute, National Research Center, El-Buhouth St. 33, Dokki, P.O.12622, Giza, Egypt.
Background: Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.
Results: In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments.
BMC Plant Biol
January 2025
Hebei Agricultural University, Baoding, China.
Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!